import pandas as pd import argparse # Define Player attributes goalkeeper = { "role_name": "goalkeeper", "primary_multiplier": 5, "primary_attributes": ["Agi", "Ref"], "secondary_multiplier": 3, "secondary_attributes": ["1v1", "Ant", "Cmd", "Cnt", "Kic", "Pos"], "tertiary_multiplier": 1, "tertiary_attributes": ["Acc", "Aer", "Cmp", "Dec", "Fir", "Han", "Pas", "Thr", "Vis"] } def load_html_data_to_dataframe(filepath: str) -> pd.DataFrame: """Read HTML file exported by FM into a Dataframe Keyword arguments: filepath -- path to fm player html file """ player_df = pd.read_html(filepath, header=0, encoding="utf-8", keep_default_na=False)[0] # Clean Dataframe to get rid of unknown values and ability ranges (takes the lowest value) # This casts to a string to be able to split, so we have to cast back to an int later. player_df = player_df.replace("-", 0) player_df = player_df.map(lambda x: str(x).split("-")[0]) return player_df def export_html_from_dataframe(player_df: pd.DataFrame, filepath: str) -> str: """Export Dataframe as html with jQuery Data Tables Taken from: https://www.thepythoncode.com/article/convert-pandas-dataframe-to-html-table-python. Keyword arguments: filepath -- path to fm player html file """ table_html = player_df.to_html(table_id="table", index=False) html = f"""
{table_html} """ open(filepath, "w", encoding="utf-8").write(html) # TODO: Do I even want this? def calc_composite_scores(player_df: pd.DataFrame) -> pd.DataFrame: """Calculate Speed, Workrate and Set Piece scores Keyword arguments: player_df: Dataframe of Players and Attributes """ player_df['Spd'] = ( player_df['Pac'] + player_df['Acc'] ) / 2 player_df['Work'] = ( player_df['Wor'] + player_df['Sta'] ) / 2 player_df['SetP'] = ( player_df['Jum'] + player_df['Bra'] ) / 2 return player_df def sum_attributes(player_df: pd.DataFrame, role: str, attribute_type: str, attributes: [str]) -> pd.DataFrame: """Create a new Column containing the sum of provided attribute columns Keyword arguments: player_df: Dataframe of Players and Attributes role: Name of role to be used as additional column in dataframe attribute_type: Type of Attribute [Primary, Secondary, Tertiary] attributes: List of Attributes to Sum """ player_df[f'{role}_{attribute_type}'] = 0 for attribute in attributes: player_df[f'{role}_{attribute_type}'] += pd.to_numeric(player_df[attribute]) player_df[f'{role}_{attribute_type}'] = round(player_df[f'{role}_{attribute_type}'] / len(attributes), 2) return player_df def calc_role_scores(player_df: pd.DataFrame, role: dict) -> pd.DataFrame: """Calculate Player Role scores based on selected attributes. Keyword arguments: player_df: Dataframe of Players and Attributes role: Dictionary containing role name, role attributes and role attribute weightings """ player_df = sum_attributes(player_df, role["role_name"], "primary", role["primary_attributes"]) player_df = sum_attributes(player_df, role["role_name"], "secondary", role["secondary_attributes"]) player_df = sum_attributes(player_df, role["role_name"], "tertiary", role["tertiary_attributes"]) divisor = role["primary_multiplier"] + role["secondary_multiplier"] + role["tertiary_multiplier"] player_df[f'{role["role_name"]}'] = round((((player_df[f'{role["role_name"]}_primary'] * 5) + (player_df[f'{role["role_name"]}_secondary'] * 3) + (player_df[f'{role["role_name"]}_tertiary'] * 1)) / divisor ), 2) return player_df def calc_player_scores(player_df: pd.DataFrame): # TODO: Create objects for each role that can be used here. player_df = calc_role_scores(player_df, goalkeeper) # TODO: Add roles. return player_df if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("-i", "--input-filepath", type=str) parser.add_argument("-o", "--output-filepath", type=str) args = parser.parse_args() input_filepath = args.input_filepath output_filepath = args.output_filepath player_df = load_html_data_to_dataframe(input_filepath) player_df = calc_player_scores(player_df) export_html_from_dataframe(player_df, output_filepath)