mirror of
https://github.com/karl0ss/football-manager-squad-and-recruitment.git
synced 2025-05-25 23:45:17 +01:00
added position calculator with logic, added pre-commit linting, updated requirements and readme, added attribute rating for position calculator
This commit is contained in:
parent
4eefd5f29f
commit
574cb795d8
46
.pre-commit-config.yaml
Normal file
46
.pre-commit-config.yaml
Normal file
@ -0,0 +1,46 @@
|
||||
repos:
|
||||
- repo: https://github.com/pre-commit/pre-commit-hooks
|
||||
rev: v4.4.0
|
||||
hooks:
|
||||
- id: check-added-large-files
|
||||
args: [--maxkb=2500]
|
||||
- id: check-ast
|
||||
- id: check-case-conflict
|
||||
- id: check-docstring-first
|
||||
- id: check-json
|
||||
- id: check-merge-conflict
|
||||
- id: check-toml
|
||||
- id: check-yaml
|
||||
- id: end-of-file-fixer
|
||||
- id: name-tests-test
|
||||
args: [--pytest-test-first]
|
||||
# - id: no-commit-to-branch
|
||||
# args: [--branch, main]
|
||||
- repo: https://github.com/pycqa/isort
|
||||
rev: 5.12.0
|
||||
hooks:
|
||||
- id: isort
|
||||
name: isort (python)
|
||||
args: ["--profile", "black"]
|
||||
- repo: https://github.com/pre-commit/mirrors-yapf
|
||||
rev: v0.32.0
|
||||
hooks:
|
||||
- id: yapf
|
||||
additional_dependencies: [toml]
|
||||
args: [--style "google" ]
|
||||
- repo: https://github.com/psf/black
|
||||
rev: 23.1.0
|
||||
hooks:
|
||||
- id: black
|
||||
args: [--line-length, '180']
|
||||
- repo: https://github.com/PyCQA/flake8
|
||||
rev: 6.0.0
|
||||
hooks:
|
||||
- id: flake8
|
||||
args: [--docstring-convention, google, --max-line-length, '180', --ignore, 'D100,D101,D102,D103,D104']
|
||||
additional_dependencies: [flake8-bugbear, flake8-docstrings, pydocstyle==6.1.1]
|
||||
- repo: https://github.com/pycqa/bandit
|
||||
rev: 1.7.4
|
||||
hooks:
|
||||
- id: bandit
|
||||
args: [--skip, B608]
|
15
README.md
15
README.md
@ -1,9 +1,16 @@
|
||||
# Football Manager player role evaluation
|
||||
Python code to evaluate Player attributes in Football Manager against roles based on role weightings. Work in progress.
|
||||
Python code to evaluate Player attributes in Football Manager against roles based on role weightings. Work in progress. Inspired by squirrel_plays_FOF's video [FM24 player recruitment using python](https://www.youtube.com/watch?v=hnAuOakqR90)
|
||||
|
||||
Inspired by squirrel_plays_FOF's video [FM24 player recruitment using python](https://www.youtube.com/watch?v=hnAuOakqR90)
|
||||
This is split into two scripts; position_score_calculator.py which calculates score based on positions ([Inspired by Mark on fm-arena](https://fm-arena.com/thread/1949-fm22-positional-filters-what-are-the-best-attributes-for-each-position/)) and role_score_calculator.py which caculates scores based on roles (this is missing plenty of roles at the moment!).
|
||||
|
||||
## Usage
|
||||
|
||||
position_score_calculator.py:
|
||||
```
|
||||
python3 role_score_calculator.py --input-filepath "squad.html" --output-filepath "squad_output.html" --roles gk fb dm w iw
|
||||
```
|
||||
|
||||
role_score_calculator.py:
|
||||
```
|
||||
python3 position_score_calculator.py --input-filepath "squad.html" --output-filepath "squad_output.html"
|
||||
```
|
||||
python3 position_score_calculator.py --input-filepath "squad.html" --output-filepath "squad_output.html" --roles gk fb dm w iw
|
||||
```
|
BIN
attribute_ratings.xlsx
Normal file
BIN
attribute_ratings.xlsx
Normal file
Binary file not shown.
@ -1,91 +1,35 @@
|
||||
import pandas as pd
|
||||
import argparse
|
||||
|
||||
# Define Player attributes
|
||||
# TODO: Add roles.
|
||||
gk = {
|
||||
"role_name": "gk",
|
||||
"primary_multiplier": 5,
|
||||
"primary_attributes": ["Agi", "Ref"],
|
||||
"secondary_multiplier": 3,
|
||||
"secondary_attributes": ["1v1", "Ant", "Cmd", "Cnt", "Kic", "Pos"],
|
||||
"tertiary_multiplier": 1,
|
||||
"tertiary_attributes": ["Acc", "Aer", "Cmp", "Dec", "Fir", "Han", "Pas", "Thr", "Vis"]
|
||||
}
|
||||
import pandas as pd
|
||||
|
||||
fb = {
|
||||
"role_name": "fb",
|
||||
"primary_multiplier": 5,
|
||||
"primary_attributes": ["Wor", "Acc", "Pac", "Sta"],
|
||||
"secondary_multiplier": 3,
|
||||
"secondary_attributes": ["Cro", "Dri", "Mar", "OtB", "Tck", "Tea"],
|
||||
"tertiary_multiplier": 1,
|
||||
"tertiary_attributes": ["Agi", "Ant", "Cnt", "Dec", "Fir", "Pas", "Pos", "Tec"]
|
||||
}
|
||||
|
||||
cd = {
|
||||
"role_name": "cd",
|
||||
"primary_multiplier": 3,
|
||||
"primary_attributes": ["Cmp", "Hea", "Jum", "Mar", "Pas", "Pos", "Str", "Tck", "Pac"],
|
||||
"secondary_multiplier": 1,
|
||||
"secondary_attributes": ["Agg", "Ant", "Bra", "Cnt", "Dec", "Fir", "Tec", "Vis"]
|
||||
}
|
||||
|
||||
dm = {
|
||||
"role_name": "dm",
|
||||
"primary_multiplier": 5,
|
||||
"primary_attributes": ["Wor", "Pac", "Sta", "Pas"],
|
||||
"secondary_multiplier": 3,
|
||||
"secondary_attributes": ["Tck", "Ant", "Cnt", "Pos", "Bal", "Agi"],
|
||||
"tertiary_multiplier": 1,
|
||||
"tertiary_attributes": ["Tea", "Fir", "Mar", "Agg", "Cmp", "Dec", "Str"]
|
||||
}
|
||||
|
||||
b2b = {
|
||||
"role_name": "b2b",
|
||||
"primary_multiplier": 5,
|
||||
"primary_attributes": ["Pas", "Wor", "Sta"],
|
||||
"secondary_multiplier": 3,
|
||||
"secondary_attributes": ["Tck", "OtB", "Tea", "Vis", "Str", "Dec", "Pos", "Pac"],
|
||||
"tertiary_multiplier": 1,
|
||||
"tertiary_attributes": ["Agg", "Ant", "Fin", "Lon", "Cmp", "Acc", "Bal", "Fir", "Dri", "Tec"]
|
||||
}
|
||||
|
||||
w = {
|
||||
"role_name": "w",
|
||||
"primary_multiplier": 3,
|
||||
"primary_attributes": ["Acc", "Cro", "Dri", "OtB", "Pac", "Tec"],
|
||||
"secondary_multiplier": 1,
|
||||
"secondary_attributes": ["Agi", "Fir", "Pas", "Sta", "Wor"],
|
||||
}
|
||||
|
||||
iw = {
|
||||
"role_name": "iw",
|
||||
"primary_multiplier": 5,
|
||||
"primary_attributes": ["Acc", "Pac", "Wor"],
|
||||
"secondary_multiplier": 3,
|
||||
"secondary_attributes": ["Dri", "Pas", "Tec", "OtB"],
|
||||
"tertiary_multiplier": 1,
|
||||
"tertiary_attributes": ["Cro", "Fir", "Cmp", "Dec", "Vis", "Agi", "Sta"]
|
||||
}
|
||||
def load_xlsx_data_to_dataframe(filepath: str) -> pd.DataFrame:
|
||||
"""Read XLSX file into a Dataframe.
|
||||
|
||||
Keyword arguments:
|
||||
filepath -- path to xlsx file
|
||||
"""
|
||||
df = pd.read_excel(filepath, engine="openpyxl", nrows=12)
|
||||
return df
|
||||
|
||||
|
||||
def load_html_data_to_dataframe(filepath: str) -> pd.DataFrame:
|
||||
"""Read HTML file exported by FM into a Dataframe
|
||||
"""Read HTML file exported by FM into a Dataframe.
|
||||
|
||||
Keyword arguments:
|
||||
filepath -- path to fm player html file
|
||||
"""
|
||||
player_df = pd.read_html(filepath, header=0, encoding="utf-8", keep_default_na=False)[0]
|
||||
df = pd.read_html(filepath, header=0, encoding="utf-8", keep_default_na=False)[0]
|
||||
# Clean Dataframe to get rid of unknown values and ability ranges (takes the lowest value)
|
||||
# This casts to a string to be able to split, so we have to cast back to an int later.
|
||||
player_df = player_df.replace("-", 0)
|
||||
player_df = player_df.map(lambda x: str(x).split("-")[0])
|
||||
return player_df
|
||||
df = df.replace("-", 0)
|
||||
df = df.map(lambda x: str(x).split("-")[0])
|
||||
return df
|
||||
|
||||
|
||||
def export_html_from_dataframe(player_df: pd.DataFrame, filepath: str) -> str:
|
||||
"""Export Dataframe as html with jQuery Data Tables
|
||||
"""Export Dataframe as html with jQuery Data Tables.
|
||||
|
||||
Taken from: https://www.thepythoncode.com/article/convert-pandas-dataframe-to-html-table-python.
|
||||
|
||||
Keyword arguments:
|
||||
@ -115,71 +59,43 @@ def export_html_from_dataframe(player_df: pd.DataFrame, filepath: str) -> str:
|
||||
"""
|
||||
open(filepath, "w", encoding="utf-8").write(html)
|
||||
|
||||
# TODO: Do I even want this?
|
||||
def calc_composite_scores(player_df: pd.DataFrame) -> pd.DataFrame:
|
||||
"""Calculate Speed, Workrate and Set Piece scores
|
||||
|
||||
def calc_role_scores(player_df: pd.DataFrame, attribute_df: pd.DataFrame) -> pd.DataFrame:
|
||||
"""Calculate Player position scores based on selected attribute weightings.
|
||||
|
||||
Keyword arguments:
|
||||
player_df: Dataframe of Players and Attributes
|
||||
player_df: Dataframe of Players and their Attributes
|
||||
attribute_df: Dataframe of Attributes and their Weightings
|
||||
"""
|
||||
player_df['Spd'] = ( player_df['Pac'] + player_df['Acc'] ) / 2
|
||||
player_df['Work'] = ( player_df['Wor'] + player_df['Sta'] ) / 2
|
||||
player_df['SetP'] = ( player_df['Jum'] + player_df['Bra'] ) / 2
|
||||
for _, weightings in attribute_df.iterrows():
|
||||
role = weightings["Ratings Weights"]
|
||||
player_df[role] = 0
|
||||
for attribute in weightings.index[1:]:
|
||||
weighting = weightings[attribute]
|
||||
try:
|
||||
player_df[role] += round(pd.to_numeric(player_df[attribute]) * weighting / 20, 2)
|
||||
except Exception as e: # Used to Nat being used twice (Nationality and Natural Fitness)
|
||||
print(e)
|
||||
continue
|
||||
return player_df
|
||||
|
||||
def sum_attributes(player_df: pd.DataFrame, role: str, attribute_type: str, attributes: [str]) -> pd.DataFrame:
|
||||
"""Create a new Column containing the sum of provided attribute columns
|
||||
|
||||
Keyword arguments:
|
||||
player_df: Dataframe of Players and Attributes
|
||||
role: Name of role to be used as additional column in dataframe
|
||||
attribute_type: Type of Attribute [Primary, Secondary, Tertiary]
|
||||
attributes: List of Attributes to Sum
|
||||
"""
|
||||
player_df[f'{role}_{attribute_type}'] = 0
|
||||
for attribute in attributes:
|
||||
player_df[f'{role}_{attribute_type}'] += pd.to_numeric(player_df[attribute])
|
||||
player_df[f'{role}_{attribute_type}'] = round(player_df[f'{role}_{attribute_type}'] / len(attributes), 2)
|
||||
return player_df
|
||||
|
||||
def calc_role_scores(player_df: pd.DataFrame, role: dict) -> pd.DataFrame:
|
||||
"""Calculate Player Role scores based on selected attributes.
|
||||
|
||||
Keyword arguments:
|
||||
player_df: Dataframe of Players and Attributes
|
||||
role: Dictionary containing role name, role attributes and role attribute weightings
|
||||
"""
|
||||
player_df = sum_attributes(player_df, role["role_name"], "primary", role["primary_attributes"])
|
||||
player_df = sum_attributes(player_df, role["role_name"], "secondary", role["secondary_attributes"])
|
||||
if "tertiary_attributes" in role:
|
||||
print("here")
|
||||
player_df = sum_attributes(player_df, role["role_name"], "tertiary", role["tertiary_attributes"])
|
||||
divisor = role["primary_multiplier"] + role["secondary_multiplier"] + role["tertiary_multiplier"]
|
||||
player_df[f'{role["role_name"]}'] = round((((player_df[f'{role["role_name"]}_primary'] * 5) + (player_df[f'{role["role_name"]}_secondary'] * 3) + (player_df[f'{role["role_name"]}_tertiary'] * 1)) / divisor ), 2)
|
||||
return player_df
|
||||
|
||||
def calc_role_scores_for_tactic_roles(player_df: pd.DataFrame, tactic_roles: [dict]):
|
||||
for role in tactic_roles:
|
||||
player_df = calc_role_scores(player_df, role)
|
||||
return player_df
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Parse Input args
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("-i", "--input-filepath", type=str, help="Path to Input Html file")
|
||||
parser.add_argument("-o", "--output-filepath", type=str, help="Path to Export resultant Html file")
|
||||
parser.add_argument("-r", "--roles", nargs='+', type=str, help="Space seperated list of roles for Evaluation")
|
||||
parser.add_argument("-a", "--attribute-filepath", type=str, help="Path to Attribute XLSX file", default="./attribute_ratings.xlsx")
|
||||
args = parser.parse_args()
|
||||
input_filepath = args.input_filepath
|
||||
output_filepath = args.output_filepath
|
||||
roles = args.roles
|
||||
attribute_filepath = args.attribute_filepath
|
||||
|
||||
# Take Role arg and convert to list of role dictionaries
|
||||
tactic_roles = []
|
||||
for role in roles:
|
||||
tactic_roles.append(globals()[role])
|
||||
|
||||
# Inport data, calculate scores for role, export results as html
|
||||
# Inport data, calculate scores for role,
|
||||
attribute_df = load_xlsx_data_to_dataframe(attribute_filepath)
|
||||
player_df = load_html_data_to_dataframe(input_filepath)
|
||||
player_df = calc_role_scores_for_tactic_roles(player_df, tactic_roles)
|
||||
player_df = calc_role_scores(player_df, attribute_df)
|
||||
# trim attributes from final output
|
||||
player_df = player_df.drop(player_df.columns[15:-11], axis=1)
|
||||
# export results as html
|
||||
export_html_from_dataframe(player_df, output_filepath)
|
||||
|
@ -1,2 +1,5 @@
|
||||
pandas
|
||||
lxml
|
||||
numpy
|
||||
lxml
|
||||
openpyxl
|
||||
pre-commit
|
||||
|
192
role_score_calculator.py
Normal file
192
role_score_calculator.py
Normal file
@ -0,0 +1,192 @@
|
||||
import argparse
|
||||
|
||||
import pandas as pd
|
||||
|
||||
# Define Player attributes
|
||||
# TODO: Add roles.
|
||||
gk = {
|
||||
"role_name": "gk",
|
||||
"primary_multiplier": 5,
|
||||
"primary_attributes": ["Agi", "Ref"],
|
||||
"secondary_multiplier": 3,
|
||||
"secondary_attributes": ["1v1", "Ant", "Cmd", "Cnt", "Kic", "Pos"],
|
||||
"tertiary_multiplier": 1,
|
||||
"tertiary_attributes": ["Acc", "Aer", "Cmp", "Dec", "Fir", "Han", "Pas", "Thr", "Vis"],
|
||||
}
|
||||
|
||||
fb = {
|
||||
"role_name": "fb",
|
||||
"primary_multiplier": 5,
|
||||
"primary_attributes": ["Wor", "Acc", "Pac", "Sta"],
|
||||
"secondary_multiplier": 3,
|
||||
"secondary_attributes": ["Cro", "Dri", "Mar", "OtB", "Tck", "Tea"],
|
||||
"tertiary_multiplier": 1,
|
||||
"tertiary_attributes": ["Agi", "Ant", "Cnt", "Dec", "Fir", "Pas", "Pos", "Tec"],
|
||||
}
|
||||
|
||||
cd = {
|
||||
"role_name": "cd",
|
||||
"primary_multiplier": 3,
|
||||
"primary_attributes": ["Cmp", "Hea", "Jum", "Mar", "Pas", "Pos", "Str", "Tck", "Pac"],
|
||||
"secondary_multiplier": 1,
|
||||
"secondary_attributes": ["Agg", "Ant", "Bra", "Cnt", "Dec", "Fir", "Tec", "Vis"],
|
||||
}
|
||||
|
||||
dm = {
|
||||
"role_name": "dm",
|
||||
"primary_multiplier": 5,
|
||||
"primary_attributes": ["Wor", "Pac", "Sta", "Pas"],
|
||||
"secondary_multiplier": 3,
|
||||
"secondary_attributes": ["Tck", "Ant", "Cnt", "Pos", "Bal", "Agi"],
|
||||
"tertiary_multiplier": 1,
|
||||
"tertiary_attributes": ["Tea", "Fir", "Mar", "Agg", "Cmp", "Dec", "Str"],
|
||||
}
|
||||
|
||||
b2b = {
|
||||
"role_name": "b2b",
|
||||
"primary_multiplier": 5,
|
||||
"primary_attributes": ["Pas", "Wor", "Sta"],
|
||||
"secondary_multiplier": 3,
|
||||
"secondary_attributes": ["Tck", "OtB", "Tea", "Vis", "Str", "Dec", "Pos", "Pac"],
|
||||
"tertiary_multiplier": 1,
|
||||
"tertiary_attributes": ["Agg", "Ant", "Fin", "Lon", "Cmp", "Acc", "Bal", "Fir", "Dri", "Tec"],
|
||||
}
|
||||
|
||||
w = {
|
||||
"role_name": "w",
|
||||
"primary_multiplier": 3,
|
||||
"primary_attributes": ["Acc", "Cro", "Dri", "OtB", "Pac", "Tec"],
|
||||
"secondary_multiplier": 1,
|
||||
"secondary_attributes": ["Agi", "Fir", "Pas", "Sta", "Wor"],
|
||||
}
|
||||
|
||||
iw = {
|
||||
"role_name": "iw",
|
||||
"primary_multiplier": 5,
|
||||
"primary_attributes": ["Acc", "Pac", "Wor"],
|
||||
"secondary_multiplier": 3,
|
||||
"secondary_attributes": ["Dri", "Pas", "Tec", "OtB"],
|
||||
"tertiary_multiplier": 1,
|
||||
"tertiary_attributes": ["Cro", "Fir", "Cmp", "Dec", "Vis", "Agi", "Sta"],
|
||||
}
|
||||
|
||||
|
||||
def load_html_data_to_dataframe(filepath: str) -> pd.DataFrame:
|
||||
"""Read HTML file exported by FM into a Dataframe.
|
||||
|
||||
Keyword arguments:
|
||||
filepath -- path to fm player html file
|
||||
"""
|
||||
player_df = pd.read_html(filepath, header=0, encoding="utf-8", keep_default_na=False)[0]
|
||||
# Clean Dataframe to get rid of unknown values and ability ranges (takes the lowest value)
|
||||
# This casts to a string to be able to split, so we have to cast back to an int later.
|
||||
player_df = player_df.replace("-", 0)
|
||||
player_df = player_df.map(lambda x: str(x).split("-")[0])
|
||||
return player_df
|
||||
|
||||
|
||||
def export_html_from_dataframe(player_df: pd.DataFrame, filepath: str) -> str:
|
||||
"""Export Dataframe as html with jQuery Data Tables. Taken from: https://www.thepythoncode.com/article/convert-pandas-dataframe-to-html-table-python.
|
||||
|
||||
Keyword arguments:
|
||||
filepath -- path to fm player html file
|
||||
"""
|
||||
table_html = player_df.to_html(table_id="table", index=False)
|
||||
html = f"""
|
||||
<html>
|
||||
<header>
|
||||
<link href="https://cdn.datatables.net/1.11.5/css/jquery.dataTables.min.css" rel="stylesheet">
|
||||
</header>
|
||||
<body>
|
||||
{table_html}
|
||||
<script src="https://code.jquery.com/jquery-3.6.0.slim.min.js" integrity="sha256-u7e5khyithlIdTpu22PHhENmPcRdFiHRjhAuHcs05RI=" crossorigin="anonymous"></script>
|
||||
<script type="text/javascript" src="https://cdn.datatables.net/1.11.5/js/jquery.dataTables.min.js"></script>
|
||||
<script>
|
||||
$(document).ready( function () {{
|
||||
$('#table').DataTable({{
|
||||
paging: false,
|
||||
order: [[12, 'desc']],
|
||||
// scrollY: 400,
|
||||
}});
|
||||
}});
|
||||
</script>
|
||||
</body>
|
||||
</html>
|
||||
"""
|
||||
open(filepath, "w", encoding="utf-8").write(html)
|
||||
|
||||
|
||||
# TODO: Do I even want this?
|
||||
def calc_composite_scores(player_df: pd.DataFrame) -> pd.DataFrame:
|
||||
"""Calculate Speed, Workrate and Set Piece scores.
|
||||
|
||||
Keyword arguments:
|
||||
player_df: Dataframe of Players and Attributes
|
||||
"""
|
||||
player_df["Spd"] = (player_df["Pac"] + player_df["Acc"]) / 2
|
||||
player_df["Work"] = (player_df["Wor"] + player_df["Sta"]) / 2
|
||||
player_df["SetP"] = (player_df["Jum"] + player_df["Bra"]) / 2
|
||||
return player_df
|
||||
|
||||
|
||||
def sum_attributes(player_df: pd.DataFrame, role: str, attribute_type: str, attributes: [str]) -> pd.DataFrame:
|
||||
"""Create a new Column containing the sum of provided attribute columns.
|
||||
|
||||
Keyword arguments:
|
||||
player_df: Dataframe of Players and Attributes
|
||||
role: Name of role to be used as additional column in dataframe
|
||||
attribute_type: Type of Attribute [Primary, Secondary, Tertiary]
|
||||
attributes: List of Attributes to Sum
|
||||
"""
|
||||
player_df[f"{role}_{attribute_type}"] = 0
|
||||
for attribute in attributes:
|
||||
player_df[f"{role}_{attribute_type}"] += pd.to_numeric(player_df[attribute])
|
||||
player_df[f"{role}_{attribute_type}"] = round(player_df[f"{role}_{attribute_type}"] / len(attributes), 2)
|
||||
return player_df
|
||||
|
||||
|
||||
def calc_role_scores(player_df: pd.DataFrame, role: dict) -> pd.DataFrame:
|
||||
"""Calculate Player Role scores based on selected attributes.
|
||||
|
||||
Keyword arguments:
|
||||
player_df: Dataframe of Players and Attributes
|
||||
role: Dictionary containing role name, role attributes and role attribute weightings
|
||||
"""
|
||||
player_df = sum_attributes(player_df, role["role_name"], "primary", role["primary_attributes"])
|
||||
player_df = sum_attributes(player_df, role["role_name"], "secondary", role["secondary_attributes"])
|
||||
if "tertiary_attributes" in role:
|
||||
print("here")
|
||||
player_df = sum_attributes(player_df, role["role_name"], "tertiary", role["tertiary_attributes"])
|
||||
divisor = role["primary_multiplier"] + role["secondary_multiplier"] + role["tertiary_multiplier"]
|
||||
player_df[f'{role["role_name"]}'] = round(
|
||||
(((player_df[f'{role["role_name"]}_primary'] * 5) + (player_df[f'{role["role_name"]}_secondary'] * 3) + (player_df[f'{role["role_name"]}_tertiary'] * 1)) / divisor), 2
|
||||
)
|
||||
return player_df
|
||||
|
||||
|
||||
def calc_role_scores_for_tactic_roles(player_df: pd.DataFrame, tactic_roles: [dict]):
|
||||
for role in tactic_roles:
|
||||
player_df = calc_role_scores(player_df, role)
|
||||
return player_df
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Parse Input args
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("-i", "--input-filepath", type=str, help="Path to Input Html file")
|
||||
parser.add_argument("-o", "--output-filepath", type=str, help="Path to Export resultant Html file")
|
||||
parser.add_argument("-r", "--roles", nargs="+", type=str, help="Space seperated list of roles for Evaluation")
|
||||
args = parser.parse_args()
|
||||
input_filepath = args.input_filepath
|
||||
output_filepath = args.output_filepath
|
||||
roles = args.roles
|
||||
|
||||
# Take Role arg and convert to list of role dictionaries
|
||||
tactic_roles = []
|
||||
for role in roles:
|
||||
tactic_roles.append(globals()[role])
|
||||
|
||||
# Inport data, calculate scores for role, export results as html
|
||||
player_df = load_html_data_to_dataframe(input_filepath)
|
||||
player_df = calc_role_scores_for_tactic_roles(player_df, tactic_roles)
|
||||
export_html_from_dataframe(player_df, output_filepath)
|
Loading…
x
Reference in New Issue
Block a user