183 lines
7.9 KiB
Python
Raw Normal View History

2023-11-26 10:30:42 +00:00
import pandas as pd
from icalendar import Calendar, Event
from datetime import datetime, timedelta
import uuid
import os
2024-01-16 11:58:05 +00:00
import csv
2023-12-05 13:30:53 +00:00
import requests
2024-01-16 11:58:05 +00:00
import lxml.html as lh
2023-12-05 13:30:53 +00:00
telegram_bot_api_key = USER = os.getenv('TELEGRAM_BOT_API_KEY')
telegram_bot_chat_id = USER = os.getenv('TELEGRAM_BOT_CHAT_ID')
def send_message(message:str)->None:
"""Send message to me on Telegram when updated.
Args:
message (str): String of message to send.
"""
requests.post(f'https://api.telegram.org/bot{telegram_bot_api_key}/sendMessage', json={'chat_id': telegram_bot_chat_id, 'text': message})
2023-11-26 10:30:42 +00:00
2024-01-13 15:37:08 +00:00
def store_df_as_csv(df:pd.DataFrame, name:str)->None:
2023-11-27 09:41:06 +00:00
"""Store dataframe as a CSV file.
2023-11-26 10:30:42 +00:00
Args:
2023-11-27 09:41:06 +00:00
df (pd.DataFrame): Dataframe of fixtures.
2024-01-13 15:37:08 +00:00
name (str): Name of the CSV file.
2023-11-26 10:30:42 +00:00
"""
2024-01-13 15:37:08 +00:00
df.to_csv(f'./{name}.csv', index=False)
2024-01-13 16:02:27 +00:00
def compare_dfs(df:pd.DataFrame, name:str)->bool:
2023-11-27 09:41:06 +00:00
"""Compare the latest DF with the stored DF for any changes.
2023-11-26 10:30:42 +00:00
Args:
2023-11-27 09:41:06 +00:00
df (pd.DataFrame): Latest copy of fixtures in dataframe
2024-01-13 16:02:27 +00:00
name (str): Name of the CSV file.
2023-11-26 10:30:42 +00:00
Returns:
2023-11-27 09:41:06 +00:00
bool: True if match, False if no match.
2023-11-26 10:30:42 +00:00
"""
2024-01-13 16:02:27 +00:00
df2 = pd.read_csv(f'./{name}.csv')
2023-11-26 10:30:42 +00:00
return df.equals(df2)
def write_calendar(cal:Calendar)->None:
2023-11-27 09:41:06 +00:00
"""Write the cal object to an ics file.
2023-11-26 10:30:42 +00:00
Args:
2023-11-27 09:41:06 +00:00
cal (Calendar): iCalendar object with all the ics details.
2023-11-26 10:30:42 +00:00
"""
f = open(os.path.join('./', 'fixtures.ics'), 'wb')
f.write(cal.to_ical())
f.close()
def does_csv_exist()->bool:
2023-11-27 09:41:06 +00:00
"""Check if the CSV file exists.
2023-11-26 10:30:42 +00:00
Returns:
2023-11-27 09:41:06 +00:00
bool: True if CSV file exists, False if not.
2023-11-26 10:30:42 +00:00
"""
return os.path.isfile('./fixtures.csv')
2024-01-13 15:37:08 +00:00
def make_ordinal(n:int)->str:
'''
Convert an integer into its ordinal representation::
make_ordinal(0) => '0th'
make_ordinal(3) => '3rd'
make_ordinal(122) => '122nd'
make_ordinal(213) => '213th'
'''
n = int(n)
if 11 <= (n % 100) <= 13:
suffix = 'th'
else:
suffix = ['th', 'st', 'nd', 'rd', 'th'][min(n % 10, 4)]
return str(n) + suffix
def create_ical_file(df:pd.DataFrame, cal:Calendar, table:pd.DataFrame)->None:
2023-11-27 09:41:06 +00:00
"""Create an iCalendar file from a dataframe.
Args:
df (pd.DataFrame): Dataframe of fixtures.
cal (Calendar): iCalendar object with all the ics details.
2024-01-13 15:37:08 +00:00
table (pd.DataFrame): Dataframe of table details.
2023-11-27 09:41:06 +00:00
"""
2023-11-26 10:30:42 +00:00
for index, row in df.iterrows():
event = Event()
2024-01-13 15:37:08 +00:00
match_type = str(row['Type'])
home_team = str(row['Home Team'])
if ("Tongham") not in home_team:
home_team = str(row['Home Team']).replace(" U12","")
away_team = str(row['Away Team.1'])
if ("Tongham") not in away_team:
away_team = str(row['Away Team.1']).replace(" U12","")
venue = str(row['Venue'])
print(row['Date / Time'], home_team, away_team, venue)
2024-01-29 08:14:12 +00:00
if row['Date / Time'] == 'TBC':
continue
2023-11-26 10:30:42 +00:00
start_date_time = datetime.strptime(row['Date / Time'], '%d/%m/%y %H:%M')
2023-11-27 09:41:06 +00:00
# Set default 8am start time to normal 930 kickoff time.
2023-11-26 10:30:42 +00:00
if start_date_time.hour == 8:
start_date_time = start_date_time + timedelta(hours=1, minutes=30)
2023-11-27 09:41:06 +00:00
# Arrival time is 30 mins before kickoff time.
2023-11-26 10:30:42 +00:00
arrival_time = start_date_time + timedelta(minutes=-30)
2024-01-13 15:37:08 +00:00
if match_type == 'L':
summary = "(League) " + home_team + f" ({make_ordinal(table.loc[table['Team'] == home_team, 'POS'].iloc[0])})" + f" {str(row['Unnamed: 4'])} " + away_team + f" ({make_ordinal(table.loc[table['Team'] == away_team, 'POS'].iloc[0])})"
else:
summary = "(Cup) " + home_team + f" {str(row['Unnamed: 4'])} " + away_team
event.add('summary', summary)
2024-01-09 19:03:18 +00:00
notes = row['Status / Notes']
2024-01-13 15:37:08 +00:00
if pd.isna(notes):
2024-01-14 13:30:24 +00:00
notes = 'No Match Notes'
2024-01-23 08:31:41 +00:00
elif notes == 'Postponed':
continue
2024-02-19 11:32:28 +00:00
event.add('description', "Arrive by - " + str(arrival_time) + "\n" + notes + "\nTable -\n" + "https://fulltime.thefa.com/index.html?league=9268728&selectedSeason=19010414&selectedDivision=165601607&selectedCompetition=0&selectedFixtureGroupKey=1_579285719")
2023-11-26 10:30:42 +00:00
event.add('dtstart', start_date_time)
2023-11-27 09:42:15 +00:00
# End 2 hours after start_date_time
2023-11-26 10:30:42 +00:00
event.add('dtend', start_date_time + timedelta(hours=2))
event.add('dtstamp', start_date_time)
event.add('uid', str(uuid.uuid4()))
2024-01-13 15:37:08 +00:00
event.add('location', venue)
2023-11-26 10:30:42 +00:00
cal.add_component(event)
write_calendar(cal)
2024-01-13 15:37:08 +00:00
2024-01-13 16:02:27 +00:00
def process_table(table_df:pd.DataFrame)->pd.DataFrame:
2024-01-13 15:37:08 +00:00
table_df = table_df[:-1]
table_df.drop(table_df.columns[len(table_df.columns)-1], axis=1, inplace=True)
2024-01-13 16:02:27 +00:00
table_df['POS'] = table_df['POS'].astype('int')
table_df['P'] = table_df['P'].astype('int')
table_df['W'] = table_df['W'].astype('int')
table_df['D'] = table_df['D'].astype('int')
table_df['L'] = table_df['L'].astype('int')
table_df['PTS'] = table_df['PTS'].astype('int')
2024-01-13 15:37:08 +00:00
store_df_as_csv(table_df, "table")
return table_df
2023-11-26 10:30:42 +00:00
2024-01-16 11:58:05 +00:00
def process_results()->None:
2024-01-29 08:24:38 +00:00
req = requests.get("https://fulltime.thefa.com/results.html?selectedSeason=19010414&selectedFixtureGroupAgeGroup=11&selectedFixtureGroupKey=1_579285719&selectedRelatedFixtureOption=3&selectedClub=&selectedTeam=466317969&selectedDateCode=all&previousSelectedFixtureGroupAgeGroup=11&previousSelectedFixtureGroupKey=1_579285719&previousSelectedClub=")
2024-01-16 11:58:05 +00:00
doc = lh.fromstring(req.text)
headers = ['Date', 'Home Team', 'Score', 'Away Team']
with open('results.csv', 'w', newline='') as fp:
file = csv.writer(fp)
file.writerow(headers)
for idx,row in enumerate(doc.xpath("//div[contains(@id,'fixture')]"), start=1):
date = row.xpath(f'/html[1]/body[1]/main[1]/div[2]/section[1]/div[1]/div[3]/div[1]/div[2]/div[{idx}]/div[1]/div[3]/a[1]/span[1]//text()')[0]
home_team = row.xpath(f'/html[1]/body[1]/main[1]/div[2]/section[1]/div[1]/div[3]/div[1]/div[2]/div[{idx}]/div[1]/div[4]/div[1]/a[1]//text()')[0].strip()
score = row.xpath(f'/html[1]/body[1]/main[1]/div[2]/section[1]/div[1]/div[3]/div[1]/div[2]/div[{idx}]/div[1]/div[5]//text()')[0].strip()
2024-01-29 08:24:38 +00:00
if score == 'X - X':
continue
2024-01-16 11:58:05 +00:00
away_team = row.xpath(f'/html[1]/body[1]/main[1]/div[2]/section[1]/div[1]/div[3]/div[1]/div[2]/div[{idx}]/div[1]/div[6]/div[2]/a[1]//text()')[0].strip()
file.writerow([date,home_team,score,away_team])
2024-01-13 16:02:27 +00:00
def compare_table():
2024-01-29 08:19:37 +00:00
table_df = pd.read_html("https://fulltime.thefa.com/table.html?league=9268728&selectedSeason=19010414&selectedDivision=165601607&selectedCompetition=0&selectedFixtureGroupKey=1_579285719")[0]
2024-01-13 16:02:27 +00:00
store_df_as_csv(table_df, "base_table")
return table_df
2023-11-26 10:30:42 +00:00
cal = Calendar()
cal.add('prodid', 'Down Grange Pumas Fixtures')
cal.add('version', '2.0')
2024-01-13 15:37:08 +00:00
fixtures_df = pd.read_html("https://fulltime.thefa.com/fixtures.html?selectedSeason=19010414&selectedFixtureGroupAgeGroup=11&selectedFixtureGroupKey=1_579285719&selectedDateCode=all&selectedClub=&selectedTeam=466317969&selectedRelatedFixtureOption=3&selectedFixtureDateStatus=&selectedFixtureStatus=&previousSelectedFixtureGroupAgeGroup=11&previousSelectedFixtureGroupKey=1_579285719&previousSelectedClub=&itemsPerPage=25")[0]
fixtures_df.head()
2024-01-16 11:58:05 +00:00
process_results()
2024-01-13 16:02:27 +00:00
table = compare_table()
2023-11-26 10:30:42 +00:00
exists = does_csv_exist()
if exists:
2024-01-13 16:02:27 +00:00
fixtures_change = compare_dfs(fixtures_df, "fixtures")
table_change = compare_dfs(table, "base_table")
if not table_change:
send_message("Table has updated")
if not all([fixtures_change, table_change]):
print("Data Updated, ical updated")
2024-01-13 15:37:08 +00:00
store_df_as_csv(fixtures_df, "fixtures")
2024-01-13 16:02:27 +00:00
create_ical_file(fixtures_df, cal, process_table(table))
2023-12-05 13:30:53 +00:00
send_message("Fixtures updated, ical updated")
2023-11-27 14:03:29 +00:00
else:
2024-01-13 16:02:27 +00:00
print("No Data Updated, No update to ical")
2023-11-26 10:30:42 +00:00
else:
2024-01-13 15:37:08 +00:00
store_df_as_csv(fixtures_df, "fixtures")
2024-01-13 16:02:27 +00:00
create_ical_file(fixtures_df, cal, process_table(table))
2023-12-05 13:30:53 +00:00
send_message("New ical file created")
2023-11-27 14:03:29 +00:00
print("New ical file created")