text chunker

This commit is contained in:
Karl 2025-09-23 15:44:13 +01:00
parent 36ff97e44a
commit fd999ec1e6

View File

@ -5,37 +5,58 @@ class CLIPTextChunker:
"""
Utility class for chunking text to fit within CLIP's token limits.
CLIP models typically have a maximum sequence length of 77 tokens.
Using a conservative limit of 60 tokens to account for special tokens.
Using a conservative limit of 70 tokens to account for special tokens.
"""
def __init__(self, max_tokens: int = 60):
def __init__(self, max_tokens: int = 70):
"""
Initialize the text chunker.
Args:
max_tokens (int): Maximum number of tokens per chunk (default: 60 for CLIP, being conservative)
max_tokens (int): Maximum number of tokens per chunk (default: 70 for CLIP, being conservative)
"""
self.max_tokens = max_tokens
self._tokenizer = None
def estimate_token_count(self, text: str) -> int:
@property
def tokenizer(self):
"""Lazy load CLIP tokenizer"""
if self._tokenizer is None:
try:
from transformers import CLIPTokenizer
self._tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-base-patch32")
except ImportError:
# Fallback to character-based estimation if transformers not available
self._tokenizer = None
return self._tokenizer
def get_token_count(self, text: str) -> int:
"""
Estimate the number of tokens in a text string.
Uses character count as a simple proxy for token count.
Get the actual token count for a text string using CLIP tokenizer.
Args:
text (str): Input text
Returns:
int: Estimated token count (using character count as proxy)
int: Actual token count
"""
# Simple approach: use character count as a proxy for token count
# This is much more reliable than trying to estimate actual tokens
if self.tokenizer is None:
# Fallback to character count if tokenizer not available
return len(text)
tokens = self.tokenizer(
text,
padding=False,
truncation=False,
return_tensors=None
)
return len(tokens["input_ids"])
def chunk_text(self, text: str, preserve_sentences: bool = True) -> List[str]:
"""
Chunk text into smaller pieces that fit within the token limit.
Uses character count as a simple and reliable approach.
Uses actual CLIP tokenization for accuracy.
Args:
text (str): Input text to chunk
@ -47,26 +68,29 @@ class CLIPTextChunker:
if not text.strip():
return []
if self.estimate_token_count(text) <= self.max_tokens:
if self.get_token_count(text) <= self.max_tokens:
return [text]
chunks = []
words = text.split()
current_chunk = []
current_length = 0
current_tokens = 0
for word in words:
word_with_space = word + " "
# If adding this word would exceed the limit, start a new chunk
if current_length + len(word_with_space) > self.max_tokens and current_chunk:
# Join the current chunk and add it
# Check if adding this word would exceed the limit
test_chunk = " ".join(current_chunk + [word])
test_tokens = self.get_token_count(test_chunk)
if test_tokens > self.max_tokens and current_chunk:
# Current chunk is complete, add it
chunks.append(" ".join(current_chunk))
current_chunk = [word]
current_length = len(word_with_space)
current_tokens = self.get_token_count(word)
else:
current_chunk.append(word)
current_length += len(word_with_space)
current_tokens = test_tokens
# Add the last chunk if it exists
if current_chunk:
@ -85,54 +109,72 @@ class CLIPTextChunker:
Returns:
List[str]: List of prioritized chunks
"""
# First, try to create chunks that include essential information
essential_chunks = []
# If text fits within limits, return as-is
if self.get_token_count(text) <= self.max_tokens:
return [text]
# Find the most important essential information at the beginning
# Look for key phrases that should be preserved
first_chunk = ""
remaining_text = text
# Try to find essential info near the beginning
for info in essential_info:
if info in text:
# Create a chunk focused on this essential info
info_index = text.find(info)
start = max(0, info_index - 50) # Include some context before
end = min(len(text), info_index + len(info) + 50) # Include some context after
context = text[start:end]
# If the essential info is near the beginning, include it
if info_index < 100: # Within first 100 characters
# Take from start up to and including the essential info
end_pos = min(len(text), info_index + len(info) + 30) # Include some context after
candidate_chunk = text[:end_pos]
chunk = self.chunk_text(context)[0] # Take the first (most relevant) chunk
if chunk not in essential_chunks:
essential_chunks.append(chunk)
# Ensure the candidate chunk ends at a word boundary
last_space = candidate_chunk.rfind(" ")
if last_space > 0:
candidate_chunk = candidate_chunk[:last_space]
# If we have too many essential chunks, combine them
if len(essential_chunks) > 1:
combined = " ".join(essential_chunks)
if self.estimate_token_count(combined) <= self.max_tokens:
return [combined]
else:
# Need to reduce the combined chunk
return self.chunk_text(combined)
# Use the basic chunking to ensure proper word boundaries
if self.get_token_count(candidate_chunk) <= self.max_tokens:
# Use chunk_text to get a properly bounded chunk
temp_chunks = self.chunk_text(candidate_chunk)
if temp_chunks:
first_chunk = temp_chunks[0]
remaining_text = text[len(first_chunk):]
break
return essential_chunks if essential_chunks else self.chunk_text(text)
# If we found a good first chunk, use it
if first_chunk and self.get_token_count(first_chunk) <= self.max_tokens:
chunks = [first_chunk]
# Add remaining text as additional chunks if needed
if remaining_text.strip():
chunks.extend(self.chunk_text(remaining_text))
return chunks
def chunk_prompt_for_clip(prompt: str, max_tokens: int = 60) -> List[str]:
# Fallback to regular chunking
return self.chunk_text(text)
def chunk_prompt_for_clip(prompt: str, max_tokens: int = 70) -> List[str]:
"""
Convenience function to chunk a prompt for CLIP processing.
Uses a conservative 60 token limit to be safe.
Uses a conservative 70 token limit to be safe.
Args:
prompt (str): The prompt to chunk
max_tokens (int): Maximum tokens per chunk (default: 60 for safety)
max_tokens (int): Maximum tokens per chunk (default: 70 for safety)
Returns:
List[str]: List of prompt chunks
"""
chunker = CLIPTextChunker(max_tokens=max_tokens)
# Define essential information that should be preserved
# Define essential information that should be preserved (matching actual prompt format)
essential_info = [
"Ultra-realistic close-up headshot",
"Ultra realistic headshot",
"male soccer player",
"looking at the camera",
"facing the camera",
"confident expression",
"soccer jersey"
"Olive skinned",
"transparent background"
]
return chunker.create_priority_chunks(prompt, essential_info)