mirror of
https://github.com/karl0ss/comfy_fm24_newgens.git
synced 2025-10-03 06:40:06 +01:00
text chunker
This commit is contained in:
parent
2172d7da7f
commit
6aeeb74e8f
@ -8,12 +8,12 @@ class CLIPTextChunker:
|
||||
Using a conservative limit of 70 tokens to account for special tokens.
|
||||
"""
|
||||
|
||||
def __init__(self, max_tokens: int = 25):
|
||||
def __init__(self, max_tokens: int = 70):
|
||||
"""
|
||||
Initialize the text chunker.
|
||||
|
||||
Args:
|
||||
max_tokens (int): Maximum number of tokens per chunk (default: 25 for CLIP, being ultra conservative)
|
||||
max_tokens (int): Maximum number of tokens per chunk (default: 70 for CLIP, leaving buffer for special tokens)
|
||||
"""
|
||||
self.max_tokens = max_tokens
|
||||
self._tokenizer = None
|
||||
@ -43,8 +43,9 @@ class CLIPTextChunker:
|
||||
"""
|
||||
if self.tokenizer is None:
|
||||
# Fallback to character count if tokenizer not available
|
||||
# Use an ultra conservative estimate: ~0.3 characters per token for CLIP
|
||||
return int(len(text) * 0.3)
|
||||
# CLIP tokenization is roughly 0.25-0.3 characters per token on average
|
||||
# Use 0.25 for a more conservative estimate to avoid exceeding limits
|
||||
return int(len(text) * 0.25)
|
||||
|
||||
tokens = self.tokenizer(
|
||||
text,
|
||||
@ -70,33 +71,45 @@ class CLIPTextChunker:
|
||||
if not text.strip():
|
||||
return []
|
||||
|
||||
# If text already fits within the limit, return as-is
|
||||
if self.get_token_count(text) <= self.max_tokens:
|
||||
return [text]
|
||||
|
||||
chunks = []
|
||||
words = text.split()
|
||||
current_chunk = []
|
||||
current_tokens = 0
|
||||
sentences = re.split(r'(?<=[.!?])\s+', text) if preserve_sentences else text.split()
|
||||
|
||||
for word in words:
|
||||
word_with_space = word + " "
|
||||
for sentence in sentences:
|
||||
sentence = sentence.strip()
|
||||
if not sentence:
|
||||
continue
|
||||
|
||||
# Check if adding this word would exceed the limit
|
||||
test_chunk = " ".join(current_chunk + [word])
|
||||
test_tokens = self.get_token_count(test_chunk)
|
||||
# If a single sentence is too long, we need to break it down further
|
||||
if self.get_token_count(sentence) > self.max_tokens:
|
||||
# Break sentence into smaller chunks
|
||||
words = sentence.split()
|
||||
current_chunk = []
|
||||
|
||||
if test_tokens > self.max_tokens and current_chunk:
|
||||
# Current chunk is complete, add it
|
||||
chunks.append(" ".join(current_chunk))
|
||||
current_chunk = [word]
|
||||
current_tokens = self.get_token_count(word)
|
||||
for word in words:
|
||||
# Test if adding this word would exceed the limit
|
||||
test_chunk = " ".join(current_chunk + [word])
|
||||
if self.get_token_count(test_chunk) <= self.max_tokens:
|
||||
current_chunk.append(word)
|
||||
else:
|
||||
# Current chunk is full, save it
|
||||
if current_chunk:
|
||||
chunks.append(" ".join(current_chunk))
|
||||
# Start new chunk with current word
|
||||
current_chunk = [word]
|
||||
|
||||
# Add the last chunk
|
||||
if current_chunk:
|
||||
chunks.append(" ".join(current_chunk))
|
||||
else:
|
||||
current_chunk.append(word)
|
||||
current_tokens = test_tokens
|
||||
|
||||
# Add the last chunk if it exists
|
||||
if current_chunk:
|
||||
chunks.append(" ".join(current_chunk))
|
||||
# Check if adding this sentence to the last chunk would exceed the limit
|
||||
if chunks and self.get_token_count(chunks[-1] + " " + sentence) <= self.max_tokens:
|
||||
chunks[-1] += " " + sentence
|
||||
else:
|
||||
chunks.append(sentence)
|
||||
|
||||
return chunks
|
||||
|
||||
@ -135,34 +148,31 @@ class CLIPTextChunker:
|
||||
if last_space > 0:
|
||||
candidate_chunk = candidate_chunk[:last_space]
|
||||
|
||||
# Use the basic chunking to ensure proper word boundaries
|
||||
# Check if this candidate chunk fits within token limits
|
||||
if self.get_token_count(candidate_chunk) <= self.max_tokens:
|
||||
# Use chunk_text to get a properly bounded chunk
|
||||
temp_chunks = self.chunk_text(candidate_chunk)
|
||||
if temp_chunks:
|
||||
first_chunk = temp_chunks[0]
|
||||
remaining_text = text[len(first_chunk):]
|
||||
break
|
||||
first_chunk = candidate_chunk
|
||||
remaining_text = text[len(first_chunk):].strip()
|
||||
break
|
||||
|
||||
# If we found a good first chunk, use it
|
||||
if first_chunk and self.get_token_count(first_chunk) <= self.max_tokens:
|
||||
chunks = [first_chunk]
|
||||
# Add remaining text as additional chunks if needed
|
||||
if remaining_text.strip():
|
||||
if remaining_text:
|
||||
chunks.extend(self.chunk_text(remaining_text))
|
||||
return chunks
|
||||
|
||||
# Fallback to regular chunking
|
||||
return self.chunk_text(text)
|
||||
|
||||
def chunk_prompt_for_clip(prompt: str, max_tokens: int = 25) -> List[str]:
|
||||
def chunk_prompt_for_clip(prompt: str, max_tokens: int = 70) -> List[str]:
|
||||
"""
|
||||
Convenience function to chunk a prompt for CLIP processing.
|
||||
Uses a conservative 25 token limit to be safe.
|
||||
Uses a 70 token limit to be safe while allowing meaningful prompts.
|
||||
|
||||
Args:
|
||||
prompt (str): The prompt to chunk
|
||||
max_tokens (int): Maximum tokens per chunk (default: 25 for safety)
|
||||
max_tokens (int): Maximum tokens per chunk (default: 70 for CLIP compatibility)
|
||||
|
||||
Returns:
|
||||
List[str]: List of prompt chunks
|
||||
|
@ -1,110 +1,83 @@
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
Test script for the CLIP text chunking functionality.
|
||||
Test script to verify that the text chunker fixes the token sequence length issues.
|
||||
"""
|
||||
|
||||
import sys
|
||||
import os
|
||||
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
|
||||
|
||||
# Add the lib directory to the path so we can import our modules
|
||||
sys.path.append(os.path.join(os.path.dirname(__file__), 'lib'))
|
||||
from lib.text_chunker import chunk_prompt_for_clip, CLIPTextChunker
|
||||
|
||||
from text_chunker import CLIPTextChunker, chunk_prompt_for_clip
|
||||
def test_long_prompt_chunking():
|
||||
"""Test that long prompts are properly chunked within CLIP token limits."""
|
||||
|
||||
def test_basic_chunking():
|
||||
"""Test basic text chunking functionality."""
|
||||
print("=== Testing Basic Text Chunking ===")
|
||||
# Create a sample long prompt similar to what the app generates
|
||||
test_prompt = "Ultra-realistic close-up headshot of a Medium Brown skinned male soccer player with a plain background looking at the camera with his whole head in shot. The player is twenty-five years old, from United Kingdom, with clean-shaven and Medium Length Brown curly hair. He is facing the camera with a confident expression, wearing a soccer jersey. The lighting is natural and soft, emphasizing facial features and skin texture"
|
||||
|
||||
chunker = CLIPTextChunker(max_tokens=60) # Using conservative limit
|
||||
print(f"Original prompt length: {len(test_prompt)} characters")
|
||||
print(f"Original prompt: {test_prompt}")
|
||||
print("-" * 80)
|
||||
|
||||
# Test short text (should not be chunked)
|
||||
short_text = "A simple prompt"
|
||||
chunks = chunker.chunk_text(short_text)
|
||||
print(f"Short text: '{short_text}' -> {len(chunks)} chunks")
|
||||
assert len(chunks) == 1, f"Expected 1 chunk, got {len(chunks)}"
|
||||
# Test the chunking
|
||||
chunker = CLIPTextChunker(max_tokens=70)
|
||||
chunks = chunk_prompt_for_clip(test_prompt)
|
||||
|
||||
# Test long text (should be chunked)
|
||||
long_text = "This is a very long text that should definitely exceed the token limit when processed by CLIP. " * 10
|
||||
chunks = chunker.chunk_text(long_text)
|
||||
print(f"Long text -> {len(chunks)} chunks")
|
||||
assert len(chunks) > 1, f"Expected multiple chunks, got {len(chunks)}"
|
||||
|
||||
# Verify each chunk is within token limit
|
||||
for i, chunk in enumerate(chunks):
|
||||
token_count = chunker.estimate_token_count(chunk)
|
||||
print(f"Chunk {i+1}: {token_count} tokens (max: {chunker.max_tokens})")
|
||||
assert token_count <= chunker.max_tokens, f"Chunk {i+1} exceeds token limit: {token_count} > {chunker.max_tokens}"
|
||||
|
||||
print("✓ Basic chunking test passed\n")
|
||||
|
||||
def test_prompt_chunking():
|
||||
"""Test chunking with actual prompts similar to the app."""
|
||||
print("=== Testing Prompt Chunking ===")
|
||||
|
||||
# Simulate a long prompt like the one from app_config.json
|
||||
long_prompt = "Ultra-realistic close-up headshot of a Fair skinned male soccer player with a plain background looking at the camera with his whole head in shot. The player is twenty-five years old, from United Kingdom, with clean-shaven and curly hair. He is facing the camera with a confident expression, wearing a soccer jersey. The lighting is natural and soft, emphasizing facial features and skin texture"
|
||||
|
||||
chunks = chunk_prompt_for_clip(long_prompt)
|
||||
print(f"Long prompt -> {len(chunks)} chunks")
|
||||
print(f"Number of chunks: {len(chunks)}")
|
||||
|
||||
for i, chunk in enumerate(chunks):
|
||||
print(f"Chunk {i+1}: {chunk[:100]}...")
|
||||
token_count = chunker.get_token_count(chunk)
|
||||
print(f"\nChunk {i+1}:")
|
||||
print(f" Text: {chunk}")
|
||||
print(f" Token count: {token_count}")
|
||||
print(f" Character count: {len(chunk)}")
|
||||
|
||||
print("✓ Prompt chunking test passed\n")
|
||||
if token_count > 77:
|
||||
print(f" ❌ ERROR: Chunk {i+1} exceeds CLIP's 77 token limit!")
|
||||
return False
|
||||
elif token_count > 70:
|
||||
print(f" ⚠️ WARNING: Chunk {i+1} is close to the 77 token limit")
|
||||
else:
|
||||
print(f" ✅ Chunk {i+1} is within safe limits")
|
||||
|
||||
def test_priority_chunking():
|
||||
"""Test priority-based chunking."""
|
||||
print("=== Testing Priority Chunking ===")
|
||||
|
||||
chunker = CLIPTextChunker(max_tokens=50) # Smaller limit for testing
|
||||
|
||||
text = "This is a long text with important information about soccer players and their characteristics. The most important part is that they are professional athletes."
|
||||
|
||||
essential_info = ["soccer players", "professional athletes", "important information"]
|
||||
|
||||
chunks = chunker.create_priority_chunks(text, essential_info)
|
||||
print(f"Priority chunks -> {len(chunks)} chunks")
|
||||
|
||||
for i, chunk in enumerate(chunks):
|
||||
print(f"Priority chunk {i+1}: {chunk}")
|
||||
|
||||
print("✓ Priority chunking test passed\n")
|
||||
print("-" * 80)
|
||||
print("✅ All chunks are within CLIP's token limits!")
|
||||
return True
|
||||
|
||||
def test_edge_cases():
|
||||
"""Test edge cases."""
|
||||
print("=== Testing Edge Cases ===")
|
||||
"""Test edge cases for the chunking functionality."""
|
||||
|
||||
chunker = CLIPTextChunker(max_tokens=60)
|
||||
chunker = CLIPTextChunker(max_tokens=70)
|
||||
|
||||
# Test empty text
|
||||
# Test empty string
|
||||
chunks = chunker.chunk_text("")
|
||||
assert len(chunks) == 0, "Empty text should return no chunks"
|
||||
assert chunks == [], "Empty string should return empty list"
|
||||
|
||||
# Test text exactly at limit
|
||||
exact_text = "A" * 60 # Text exactly at the character limit
|
||||
chunks = chunker.chunk_text(exact_text)
|
||||
# Should return the text as-is since it's exactly at the limit
|
||||
assert len(chunks) == 1, f"Expected 1 chunk for text at limit, got {len(chunks)}"
|
||||
assert chunks[0] == exact_text, "Text at limit should be returned unchanged"
|
||||
# Test short string
|
||||
short_text = "Hello world"
|
||||
chunks = chunker.chunk_text(short_text)
|
||||
assert len(chunks) == 1 and chunks[0] == short_text, "Short text should not be chunked"
|
||||
|
||||
# Test text that exceeds limit (with spaces so it can be split)
|
||||
long_text = "This is a very long text that should definitely exceed the character limit when processed. " * 3 # Text that exceeds the limit
|
||||
chunks = chunker.chunk_text(long_text)
|
||||
assert len(chunks) > 1, f"Expected multiple chunks for long text, got {len(chunks)}"
|
||||
# Test very long single word (edge case)
|
||||
long_word = "a" * 200
|
||||
chunks = chunker.chunk_text(long_word)
|
||||
# Should handle this gracefully
|
||||
for chunk in chunks:
|
||||
assert chunker.estimate_token_count(chunk) <= chunker.max_tokens, f"Chunk exceeds limit: {len(chunk)} > {chunker.max_tokens}"
|
||||
assert chunker.get_token_count(chunk) <= 70, "Long word chunks should respect token limit"
|
||||
|
||||
print("✓ Edge cases test passed\n")
|
||||
print("✅ Edge case tests passed!")
|
||||
return True
|
||||
|
||||
if __name__ == "__main__":
|
||||
try:
|
||||
test_basic_chunking()
|
||||
test_prompt_chunking()
|
||||
test_priority_chunking()
|
||||
test_edge_cases()
|
||||
print("Testing text chunker fixes...")
|
||||
print("=" * 80)
|
||||
|
||||
print("🎉 All tests passed! Text chunking functionality is working correctly.")
|
||||
success1 = test_long_prompt_chunking()
|
||||
success2 = test_edge_cases()
|
||||
|
||||
except Exception as e:
|
||||
print(f"❌ Test failed: {e}")
|
||||
if success1 and success2:
|
||||
print("\n🎉 All tests passed! The token sequence length issue should be fixed.")
|
||||
sys.exit(0)
|
||||
else:
|
||||
print("\n❌ Some tests failed. The issue may not be fully resolved.")
|
||||
sys.exit(1)
|
Loading…
x
Reference in New Issue
Block a user