2024-12-13 12:06:05 +00:00
|
|
|
from rembg import remove
|
|
|
|
from PIL import Image
|
|
|
|
from tqdm import tqdm
|
2024-12-14 08:11:27 +00:00
|
|
|
import os
|
2024-12-13 16:43:45 +00:00
|
|
|
from concurrent.futures import ThreadPoolExecutor
|
2024-12-13 12:06:05 +00:00
|
|
|
|
2024-12-14 08:11:27 +00:00
|
|
|
import onnxruntime as ort
|
|
|
|
|
2024-12-14 15:49:36 +00:00
|
|
|
def process_images_in_batch(batch, use_gpu):
|
2024-12-13 12:06:05 +00:00
|
|
|
"""
|
2024-12-14 08:11:27 +00:00
|
|
|
Process a batch of images: remove their backgrounds and save the results.
|
|
|
|
|
2024-12-13 16:43:45 +00:00
|
|
|
Args:
|
2024-12-14 08:11:27 +00:00
|
|
|
batch (list): List of tuples (input_path, output_path).
|
2024-12-14 15:49:36 +00:00
|
|
|
use_gpu (bool): Whether to enable GPU support.
|
2024-12-14 08:11:27 +00:00
|
|
|
|
2024-12-13 16:43:45 +00:00
|
|
|
Returns:
|
2024-12-14 08:11:27 +00:00
|
|
|
int: Number of images successfully processed in this batch.
|
2024-12-13 16:43:45 +00:00
|
|
|
"""
|
2024-12-14 08:11:27 +00:00
|
|
|
success_count = 0
|
|
|
|
for input_path, output_path in batch:
|
|
|
|
try:
|
|
|
|
with Image.open(input_path) as img:
|
2024-12-14 15:49:36 +00:00
|
|
|
# Initialize ONNX session options with GPU support if required
|
|
|
|
session_options = ort.SessionOptions()
|
|
|
|
providers = ["CUDAExecutionProvider"] if use_gpu else ["CPUExecutionProvider"]
|
|
|
|
ort.set_default_logger_severity(3) # Suppress non-critical logging
|
|
|
|
|
|
|
|
# Initialize the rembg remove function with appropriate providers
|
|
|
|
output = remove(img, session_options=session_options, providers=providers)
|
2024-12-14 08:11:27 +00:00
|
|
|
output.save(output_path)
|
|
|
|
success_count += 1
|
|
|
|
except Exception as e:
|
|
|
|
print(f"Error processing {input_path}: {str(e)}")
|
|
|
|
return success_count
|
|
|
|
|
2024-12-14 15:49:36 +00:00
|
|
|
def remove_bg_from_files_in_dir(directory, max_workers=2, batch_size=3, use_gpu=False):
|
2024-12-13 16:43:45 +00:00
|
|
|
"""
|
2024-12-14 08:11:27 +00:00
|
|
|
Process all JPG, JPEG, and PNG images in the given directory and its subfolders using parallel processing and GPU.
|
2024-12-13 12:06:05 +00:00
|
|
|
|
|
|
|
Args:
|
|
|
|
directory (str): Path to the directory containing images.
|
2024-12-13 16:43:45 +00:00
|
|
|
max_workers (int): Maximum number of threads to use for parallel processing.
|
2024-12-14 08:11:27 +00:00
|
|
|
batch_size (int): Number of images to process per batch.
|
2024-12-14 15:49:36 +00:00
|
|
|
use_gpu (bool): Whether to enable GPU support.
|
2024-12-14 08:11:27 +00:00
|
|
|
|
2024-12-13 12:06:05 +00:00
|
|
|
Returns:
|
|
|
|
int: The number of images successfully processed.
|
|
|
|
"""
|
2024-12-13 16:43:45 +00:00
|
|
|
files_to_process = []
|
|
|
|
|
|
|
|
# Gather all the image files to process
|
|
|
|
for subdir, dirs, files in os.walk(directory):
|
|
|
|
for file in files:
|
2024-12-14 08:11:27 +00:00
|
|
|
if file.lower().endswith(('.jpg', '.jpeg', '.png')):
|
2024-12-13 16:43:45 +00:00
|
|
|
input_path = os.path.join(subdir, file)
|
|
|
|
output_filename = os.path.splitext(file)[0] + '.png'
|
|
|
|
output_path = os.path.join(subdir, output_filename)
|
|
|
|
files_to_process.append((input_path, output_path))
|
|
|
|
|
2024-12-14 08:11:27 +00:00
|
|
|
processed_count = 0
|
|
|
|
|
|
|
|
# Divide files into batches
|
|
|
|
batches = [files_to_process[i:i + batch_size] for i in range(0, len(files_to_process), batch_size)]
|
|
|
|
|
2024-12-13 16:43:45 +00:00
|
|
|
with ThreadPoolExecutor(max_workers=max_workers) as executor:
|
2024-12-14 15:49:36 +00:00
|
|
|
with tqdm(total=len(files_to_process), desc="Removing Backgrounds", unit="image") as pbar:
|
|
|
|
futures = {
|
|
|
|
executor.submit(process_images_in_batch, batch, use_gpu): batch
|
|
|
|
for batch in batches
|
|
|
|
}
|
2024-12-13 16:43:45 +00:00
|
|
|
|
|
|
|
for future in futures:
|
2024-12-14 08:11:27 +00:00
|
|
|
processed_count += future.result()
|
|
|
|
pbar.update(len(futures[future]))
|
2024-12-13 16:43:45 +00:00
|
|
|
|
|
|
|
return processed_count
|