123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657 |
- import os
- import warnings
- import tempfile
- from .utils.files import filename, write_srt
- from .utils.ffmpeg import get_audio, overlay_subtitles
- from .utils.whisper import WhisperAI
- def process(args: dict):
- model_name: str = args.pop("model")
- output_dir: str = args.pop("output_dir")
- output_srt: bool = args.pop("output_srt")
- srt_only: bool = args.pop("srt_only")
- language: str = args.pop("language")
- sample_interval: str = args.pop("sample_interval")
- device: str = args.pop("device")
- compute_type: str = args.pop("compute_type")
-
- os.makedirs(output_dir, exist_ok=True)
- if model_name.endswith(".en"):
- warnings.warn(
- f"{model_name} is an English-only model, forcing English detection.")
- args["language"] = "en"
- # if translate task used and language argument is set, then use it
- elif language != "auto":
- args["language"] = language
- audios = get_audio(args.pop("video"), args.pop('audio_channel'), sample_interval)
- subtitles = get_subtitles(
- audios, output_srt or srt_only, output_dir, model_name, device, compute_type, args
- )
- if srt_only:
- return
- overlay_subtitles(subtitles, output_dir, sample_interval)
- def get_subtitles(audio_paths: list, output_srt: bool, output_dir: str, model_name: str, device: str, compute_type: str, model_args: dict):
- model = WhisperAI(model_name, device, compute_type, model_args)
- subtitles_path = {}
- for path, audio_path in audio_paths.items():
- print(
- f"Generating subtitles for {filename(path)}... This might take a while."
- )
- srt_path = output_dir if output_srt else tempfile.gettempdir()
- srt_path = os.path.join(srt_path, f"{filename(path)}.srt")
-
- segments = model.transcribe(audio_path)
- with open(srt_path, "w", encoding="utf-8") as srt:
- write_srt(segments, file=srt)
- subtitles_path[path] = srt_path
- return subtitles_path
|