mirror of
https://github.com/karl0ss/bazarr-ai-sub-generator.git
synced 2025-10-20 02:04:00 +01:00
123 lines
4.8 KiB
Python
123 lines
4.8 KiB
Python
import os
|
|
import warnings
|
|
import tempfile
|
|
import time
|
|
import threading
|
|
from concurrent.futures import ThreadPoolExecutor, as_completed
|
|
from utils.files import filename, write_srt
|
|
from utils.ffmpeg import get_audio, add_subtitles_to_mp4
|
|
from utils.bazarr import get_wanted_episodes, get_episode_details, sync_series
|
|
from utils.sonarr import update_show_in_sonarr
|
|
from utils.whisper import WhisperAI
|
|
|
|
|
|
def process_episode(episode, model_args, args, audio_channel, sample_interval, processing_episodes, completed_episodes):
|
|
"""Process a single episode for subtitle generation."""
|
|
episode_id = episode["sonarrEpisodeId"]
|
|
|
|
try:
|
|
# Double-check that this episode is still wanted before processing
|
|
current_wanted = get_wanted_episodes()
|
|
still_wanted = any(ep["sonarrEpisodeId"] == episode_id for ep in current_wanted["data"])
|
|
|
|
if not still_wanted:
|
|
processing_episodes.discard(episode_id)
|
|
return f"Skipped (no longer wanted): {episode['seriesTitle']} - {episode['episode_number']}"
|
|
|
|
print(f"Processing {episode['seriesTitle']} - {episode['episode_number']}")
|
|
episode_data = get_episode_details(episode_id)
|
|
audios = get_audio([episode_data["path"]], audio_channel, sample_interval)
|
|
subtitles = get_subtitles(audios, tempfile.gettempdir(), model_args, args)
|
|
|
|
add_subtitles_to_mp4(subtitles)
|
|
update_show_in_sonarr(episode["sonarrSeriesId"])
|
|
time.sleep(5)
|
|
sync_series()
|
|
|
|
processing_episodes.discard(episode_id)
|
|
completed_episodes.append(episode_id)
|
|
return f"Completed: {episode['seriesTitle']} - {episode['episode_number']}"
|
|
except Exception as e:
|
|
processing_episodes.discard(episode_id)
|
|
return f"Failed {episode['seriesTitle']} - {episode['episode_number']}: {str(e)}"
|
|
|
|
|
|
def process(args: dict):
|
|
model_name: str = args.pop("model")
|
|
language: str = args.pop("language")
|
|
sample_interval: str = args.pop("sample_interval")
|
|
audio_channel: str = args.pop("audio_channel")
|
|
workers: int = args.pop("workers", 1)
|
|
|
|
if model_name.endswith(".en"):
|
|
warnings.warn(
|
|
f"{model_name} is an English-only model, forcing English detection."
|
|
)
|
|
args["language"] = "en"
|
|
# if translate task used and language argument is set, then use it
|
|
elif language != "auto":
|
|
args["language"] = language
|
|
|
|
model_args = {}
|
|
model_args["model_size_or_path"] = model_name
|
|
model_args["device"] = args.pop("device")
|
|
model_args["compute_type"] = args.pop("compute_type")
|
|
|
|
list_of_episodes_needing_subtitles = get_wanted_episodes()
|
|
print(
|
|
f"Found {list_of_episodes_needing_subtitles['total']} episodes needing subtitles."
|
|
)
|
|
print(f"Processing with {workers} concurrent worker(s)...")
|
|
|
|
# Thread-safe tracking of episodes being processed and completed
|
|
processing_episodes = set()
|
|
completed_episodes_list = []
|
|
total_episodes = len(list_of_episodes_needing_subtitles["data"])
|
|
|
|
# Filter episodes to avoid duplicates and respect concurrent processing limits
|
|
episodes_to_process = []
|
|
for episode in list_of_episodes_needing_subtitles["data"]:
|
|
episode_id = episode["sonarrEpisodeId"]
|
|
if episode_id not in processing_episodes:
|
|
processing_episodes.add(episode_id)
|
|
episodes_to_process.append(episode)
|
|
|
|
print(f"Starting processing of {len(episodes_to_process)} unique episodes...")
|
|
|
|
with ThreadPoolExecutor(max_workers=workers) as executor:
|
|
# Submit episodes for processing with tracking sets
|
|
future_to_episode = {
|
|
executor.submit(process_episode, episode, model_args, args, audio_channel, sample_interval, processing_episodes, completed_episodes_list): episode
|
|
for episode in episodes_to_process
|
|
}
|
|
|
|
# Collect results as they complete
|
|
completed_count = 0
|
|
for future in as_completed(future_to_episode):
|
|
completed_count += 1
|
|
result = future.result()
|
|
print(f"[{completed_count}/{total_episodes}] {result}")
|
|
|
|
print(f"Processing complete. {len(completed_episodes_list)} episodes processed successfully.")
|
|
|
|
|
|
def get_subtitles(
|
|
audio_paths: list, output_dir: str, model_args: dict, transcribe_args: dict
|
|
):
|
|
model = WhisperAI(model_args, transcribe_args)
|
|
|
|
subtitles_path = {}
|
|
|
|
for path, audio_path in audio_paths.items():
|
|
print(f"Generating subtitles for {filename(path)}... This might take a while.")
|
|
srt_path = os.path.join(output_dir, f"{filename(path)}.srt")
|
|
|
|
segments = model.transcribe(audio_path)
|
|
|
|
with open(srt_path, "w", encoding="utf-8") as srt:
|
|
write_srt(segments, file=srt)
|
|
|
|
subtitles_path[path] = srt_path
|
|
|
|
return subtitles_path
|