2024-01-08 12:30:59 +00:00

60 lines
3.1 KiB
Python

import argparse
from faster_whisper import available_models
from utils.constants import LANGUAGE_CODES
from main import process
from utils.convert import str2bool, str2timeinterval
def main():
"""
Main entry point for the script.
Parses command line arguments, processes the inputs using the specified options,
and performs transcription or translation based on the specified task.
"""
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument("--audio_channel", default="0",
type=int, help="audio channel index to use")
parser.add_argument("--sample_interval", type=str2timeinterval, default=None,
help="generate subtitles for a specific \
fragment of the video (e.g. 01:02:05-01:03:45)")
parser.add_argument("--model", default="small",
choices=available_models(), help="name of the Whisper model to use")
parser.add_argument("--device", type=str, default="auto",
choices=["cpu", "cuda", "auto"],
help="Device to use for computation (\"cpu\", \"cuda\", \"auto\")")
parser.add_argument("--compute_type", type=str, default="default", choices=[
"int8", "int8_float32", "int8_float16", "int8_bfloat16",
"int16", "float16", "bfloat16", "float32"],
help="Type to use for computation. \
See https://opennmt.net/CTranslate2/quantization.html.")
# parser.add_argument("--output_dir", "-o", type=str,
# default=".", help="directory to save the outputs")
parser.add_argument("--output_srt", type=str2bool, default=False,
help="whether to output the .srt file along with the video files")
parser.add_argument("--srt_only", type=str2bool, default=False,
help="only generate the .srt file and not create overlayed video")
parser.add_argument("--beam_size", type=int, default=5,
help="model parameter, tweak to increase accuracy")
parser.add_argument("--no_speech_threshold", type=float, default=0.6,
help="model parameter, tweak to increase accuracy")
parser.add_argument("--condition_on_previous_text", type=str2bool, default=True,
help="model parameter, tweak to increase accuracy")
parser.add_argument("--task", type=str, default="transcribe",
choices=["transcribe", "translate"],
help="whether to perform X->X speech recognition ('transcribe') \
or X->English translation ('translate')")
parser.add_argument("--language", type=str, default="auto",
choices=LANGUAGE_CODES,
help="What is the origin language of the video? \
If unset, it is detected automatically.")
args = parser.parse_args().__dict__
process(args)
if __name__ == '__main__':
main()