New version using faster-whisper with more model parameters exposed

This commit is contained in:
Sergey Chernyaev 2024-01-04 23:45:37 +01:00
parent 124ccb1ac1
commit d8a3d96f52
14 changed files with 305 additions and 151 deletions

2
.gitignore vendored
View File

@ -1,5 +1,5 @@
dist dist
.DS_Store .DS_Store
*.egg-info *.egg-info
auto_subtitle/__pycache__
build build
__pycache__

View File

@ -1,6 +1,7 @@
MIT License MIT License
Copyright (c) 2022 Miguel Piedrafita <soy@miguelpiedrafita.com> Copyright (c) 2022-2024 Miguel Piedrafita <soy@miguelpiedrafita.com>
Copyright (c) 2024 Sergey Chernyaev <schernyae@gmail.com>
Permission is hereby granted, free of charge, to any person obtaining a copy Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal of this software and associated documentation files (the "Software"), to deal

View File

@ -1,12 +1,12 @@
# Automatic subtitles in your videos # Automatic subtitles in your videos
This repository uses `ffmpeg` and [OpenAI's Whisper](https://openai.com/blog/whisper) to automatically generate and overlay subtitles on any video. This repository uses `ffmpeg` and [OpenAI's Whisper](https://openai.com/blog/whisper) ([faster-whisper](https://github.com/SYSTRAN/faster-whisper) implementation) to automatically generate and overlay subtitles on any video.
## Installation ## Installation
To get started, you'll need Python 3.7 or newer. Install the binary by running the following command: To get started, you'll need Python 3.7 or newer. Install the binary by running the following command:
pip install git+https://github.com/m1guelpf/auto-subtitle.git pip install git+https://github.com/Sirozha1337/faster-auto-subtitle.git@dev
You'll also need to install [`ffmpeg`](https://ffmpeg.org/), which is available from most package managers: You'll also need to install [`ffmpeg`](https://ffmpeg.org/), which is available from most package managers:
@ -25,19 +25,32 @@ choco install ffmpeg
The following command will generate a `subtitled/video.mp4` file contained the input video with overlayed subtitles. The following command will generate a `subtitled/video.mp4` file contained the input video with overlayed subtitles.
auto_subtitle /path/to/video.mp4 -o subtitled/ faster_auto_subtitle /path/to/video.mp4 -o subtitled/
The default setting (which selects the `small` model) works well for transcribing English. You can optionally use a bigger model for better results (especially with other languages). The available models are `tiny`, `tiny.en`, `base`, `base.en`, `small`, `small.en`, `medium`, `medium.en`, `large`. The default setting (which selects the `small` model) works well for transcribing English. You can optionally use a bigger model for better results (especially with other languages). The available models are `tiny`, `tiny.en`, `base`, `base.en`, `small`, `small.en`, `medium`, `medium.en`, `large`, `large-v1`, `large-v2`, `large-v3`.
faster_auto_subtitle /path/to/video.mp4 --model medium
auto_subtitle /path/to/video.mp4 --model medium
Adding `--task translate` will translate the subtitles into English: Adding `--task translate` will translate the subtitles into English:
auto_subtitle /path/to/video.mp4 --task translate faster_auto_subtitle /path/to/video.mp4 --task translate
Run the following to view all available options: Run the following to view all available options:
auto_subtitle --help faster_auto_subtitle --help
## Tips
The tool also exposes a couple of model parameters, that you can tweak to increase accuracy.
Higher `beam_size` usually leads to greater accuraccy, but slows down the process.
Setting higher `no_speech_threshold` could be useful for videos with a lot of background noise to stop Whisper from "hallucinating" subtitles for it.
In my experience settings option `condition_on_previous_text` to `False` dramatically increases accurracy for videos like TV Shows with an intro song at the start.
You can use `sample_interval` parameter to generate subtitles for a portion of the video to play around with those parameters:
faster_auto_subtitle /path/to/video.mp4 --model medium --sample_interval 00:05:30-00:07:00 --condition_on_previous_text False --beam_size 6 --no_speech_threshold 0.7
## License ## License

View File

@ -1,114 +1,39 @@
import os
import ffmpeg
import whisper
import argparse import argparse
import warnings from faster_whisper import available_models
import tempfile from .main import process
from .utils import filename, str2bool, write_srt from .utils.convert import str2bool, str2timeinterval
def main(): def main():
parser = argparse.ArgumentParser( parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter) formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument("video", nargs="+", type=str, parser.add_argument("video", nargs="+", type=str,
help="paths to video files to transcribe") help="paths to video files to transcribe")
parser.add_argument("--audio_channel", default="0",
type=int, help="audio channel index to use")
parser.add_argument("--sample_interval", type=str2timeinterval, default=None,
help="generate subtitles for a specific fragment of the video (e.g. 01:02:05-01:03:45)")
parser.add_argument("--model", default="small", parser.add_argument("--model", default="small",
choices=whisper.available_models(), help="name of the Whisper model to use") choices=available_models(), help="name of the Whisper model to use")
parser.add_argument("--output_dir", "-o", type=str, parser.add_argument("--output_dir", "-o", type=str,
default=".", help="directory to save the outputs") default=".", help="directory to save the outputs")
parser.add_argument("--output_srt", type=str2bool, default=False, parser.add_argument("--output_srt", type=str2bool, default=False,
help="whether to output the .srt file along with the video files") help="whether to output the .srt file along with the video files")
parser.add_argument("--srt_only", type=str2bool, default=False, parser.add_argument("--srt_only", type=str2bool, default=False,
help="only generate the .srt file and not create overlayed video") help="only generate the .srt file and not create overlayed video")
parser.add_argument("--verbose", type=str2bool, default=False, parser.add_argument("--beam_size", type=int, default=5,
help="whether to print out the progress and debug messages") help="model parameter, tweak to increase accuracy")
parser.add_argument("--no_speech_threshold", type=float, default=0.6,
help="model parameter, tweak to increase accuracy")
parser.add_argument("--condition_on_previous_text", type=str2bool, default=True,
help="model parameter, tweak to increase accuracy")
parser.add_argument("--task", type=str, default="transcribe", choices=[ parser.add_argument("--task", type=str, default="transcribe", choices=[
"transcribe", "translate"], help="whether to perform X->X speech recognition ('transcribe') or X->English translation ('translate')") "transcribe", "translate"], help="whether to perform X->X speech recognition ('transcribe') or X->English translation ('translate')")
parser.add_argument("--language", type=str, default="auto", choices=["auto","af","am","ar","as","az","ba","be","bg","bn","bo","br","bs","ca","cs","cy","da","de","el","en","es","et","eu","fa","fi","fo","fr","gl","gu","ha","haw","he","hi","hr","ht","hu","hy","id","is","it","ja","jw","ka","kk","km","kn","ko","la","lb","ln","lo","lt","lv","mg","mi","mk","ml","mn","mr","ms","mt","my","ne","nl","nn","no","oc","pa","pl","ps","pt","ro","ru","sa","sd","si","sk","sl","sn","so","sq","sr","su","sv","sw","ta","te","tg","th","tk","tl","tr","tt","uk","ur","uz","vi","yi","yo","zh"], parser.add_argument("--language", type=str, default="auto", choices=["auto","af","am","ar","as","az","ba","be","bg","bn","bo","br","bs","ca","cs","cy","da","de","el","en","es","et","eu","fa","fi","fo","fr","gl","gu","ha","haw","he","hi","hr","ht","hu","hy","id","is","it","ja","jw","ka","kk","km","kn","ko","la","lb","ln","lo","lt","lv","mg","mi","mk","ml","mn","mr","ms","mt","my","ne","nl","nn","no","oc","pa","pl","ps","pt","ro","ru","sa","sd","si","sk","sl","sn","so","sq","sr","su","sv","sw","ta","te","tg","th","tk","tl","tr","tt","uk","ur","uz","vi","yi","yo","zh"],
help="What is the origin language of the video? If unset, it is detected automatically.") help="What is the origin language of the video? If unset, it is detected automatically.")
args = parser.parse_args().__dict__ args = parser.parse_args().__dict__
model_name: str = args.pop("model")
output_dir: str = args.pop("output_dir")
output_srt: bool = args.pop("output_srt")
srt_only: bool = args.pop("srt_only")
language: str = args.pop("language")
os.makedirs(output_dir, exist_ok=True)
if model_name.endswith(".en"): process(args)
warnings.warn(
f"{model_name} is an English-only model, forcing English detection.")
args["language"] = "en"
# if translate task used and language argument is set, then use it
elif language != "auto":
args["language"] = language
model = whisper.load_model(model_name)
audios = get_audio(args.pop("video"))
subtitles = get_subtitles(
audios, output_srt or srt_only, output_dir, lambda audio_path: model.transcribe(audio_path, **args)
)
if srt_only:
return
for path, srt_path in subtitles.items():
out_path = os.path.join(output_dir, f"{filename(path)}.mp4")
print(f"Adding subtitles to {filename(path)}...")
video = ffmpeg.input(path)
audio = video.audio
ffmpeg.concat(
video.filter('subtitles', srt_path, force_style="OutlineColour=&H40000000,BorderStyle=3"), audio, v=1, a=1
).output(out_path).run(quiet=True, overwrite_output=True)
print(f"Saved subtitled video to {os.path.abspath(out_path)}.")
def get_audio(paths):
temp_dir = tempfile.gettempdir()
audio_paths = {}
for path in paths:
print(f"Extracting audio from {filename(path)}...")
output_path = os.path.join(temp_dir, f"{filename(path)}.wav")
ffmpeg.input(path).output(
output_path,
acodec="pcm_s16le", ac=1, ar="16k"
).run(quiet=True, overwrite_output=True)
audio_paths[path] = output_path
return audio_paths
def get_subtitles(audio_paths: list, output_srt: bool, output_dir: str, transcribe: callable):
subtitles_path = {}
for path, audio_path in audio_paths.items():
srt_path = output_dir if output_srt else tempfile.gettempdir()
srt_path = os.path.join(srt_path, f"{filename(path)}.srt")
print(
f"Generating subtitles for {filename(path)}... This might take a while."
)
warnings.filterwarnings("ignore")
result = transcribe(audio_path)
warnings.filterwarnings("default")
with open(srt_path, "w", encoding="utf-8") as srt:
write_srt(result["segments"], file=srt)
subtitles_path[path] = srt_path
return subtitles_path
if __name__ == '__main__': if __name__ == '__main__':

55
auto_subtitle/main.py Normal file
View File

@ -0,0 +1,55 @@
import os
import warnings
import tempfile
from .utils.files import filename, write_srt
from .utils.ffmpeg import get_audio, overlay_subtitles
from .utils.whisper import WhisperAI
def process(args: dict):
model_name: str = args.pop("model")
output_dir: str = args.pop("output_dir")
output_srt: bool = args.pop("output_srt")
srt_only: bool = args.pop("srt_only")
language: str = args.pop("language")
sample_interval: str = args.pop("sample_interval")
os.makedirs(output_dir, exist_ok=True)
if model_name.endswith(".en"):
warnings.warn(
f"{model_name} is an English-only model, forcing English detection.")
args["language"] = "en"
# if translate task used and language argument is set, then use it
elif language != "auto":
args["language"] = language
audios = get_audio(args.pop("video"), args.pop('audio_channel'), sample_interval)
subtitles = get_subtitles(
audios, output_srt or srt_only, output_dir, model_name, args
)
if srt_only:
return
overlay_subtitles(subtitles, output_dir, sample_interval)
def get_subtitles(audio_paths: list, output_srt: bool, output_dir: str, model_name: str, model_args: dict):
model = WhisperAI(model_name, model_args)
subtitles_path = {}
for path, audio_path in audio_paths.items():
print(
f"Generating subtitles for {filename(path)}... This might take a while."
)
srt_path = output_dir if output_srt else tempfile.gettempdir()
srt_path = os.path.join(srt_path, f"{filename(path)}.srt")
segments = model.transcribe(audio_path)
with open(srt_path, "w", encoding="utf-8") as srt:
write_srt(segments, file=srt)
subtitles_path[path] = srt_path
return subtitles_path

View File

@ -1,46 +0,0 @@
import os
from typing import Iterator, TextIO
def str2bool(string):
string = string.lower()
str2val = {"true": True, "false": False}
if string in str2val:
return str2val[string]
else:
raise ValueError(
f"Expected one of {set(str2val.keys())}, got {string}")
def format_timestamp(seconds: float, always_include_hours: bool = False):
assert seconds >= 0, "non-negative timestamp expected"
milliseconds = round(seconds * 1000.0)
hours = milliseconds // 3_600_000
milliseconds -= hours * 3_600_000
minutes = milliseconds // 60_000
milliseconds -= minutes * 60_000
seconds = milliseconds // 1_000
milliseconds -= seconds * 1_000
hours_marker = f"{hours:02d}:" if always_include_hours or hours > 0 else ""
return f"{hours_marker}{minutes:02d}:{seconds:02d},{milliseconds:03d}"
def write_srt(transcript: Iterator[dict], file: TextIO):
for i, segment in enumerate(transcript, start=1):
print(
f"{i}\n"
f"{format_timestamp(segment['start'], always_include_hours=True)} --> "
f"{format_timestamp(segment['end'], always_include_hours=True)}\n"
f"{segment['text'].strip().replace('-->', '->')}\n",
file=file,
flush=True,
)
def filename(path):
return os.path.splitext(os.path.basename(path))[0]

View File

View File

@ -0,0 +1,82 @@
from datetime import datetime, timedelta
def str2bool(string):
string = string.lower()
str2val = {"true": True, "false": False}
if string in str2val:
return str2val[string]
else:
raise ValueError(
f"Expected one of {set(str2val.keys())}, got {string}")
def str2timeinterval(string):
if string is None:
return None
if '-' not in string:
raise ValueError(
f"Expected time interval HH:mm:ss-HH:mm:ss or HH:mm-HH:mm or ss-ss, got {string}")
intervals = string.split('-')
if len(intervals) != 2:
raise ValueError(
f"Expected time interval HH:mm:ss-HH:mm:ss or HH:mm-HH:mm or ss-ss, got {string}")
start = try_parse_timestamp(intervals[0])
end = try_parse_timestamp(intervals[1])
if start >= end:
raise ValueError(
f"Expected time interval end to be higher than start, got {start} >= {end}")
return [start, end]
def time_to_timestamp(string):
split_time = string.split(':')
if len(split_time) == 0 or len(split_time) > 3 or not all([ x.isdigit() for x in split_time ]):
raise ValueError(
f"Expected HH:mm:ss or HH:mm or ss, got {string}")
if len(split_time) == 1:
return int(split_time[0])
if len(split_time) == 2:
return int(split_time[0]) * 60 * 60 + int(split_time[1]) * 60
return int(split_time[0]) * 60 * 60 + int(split_time[1]) * 60 + int(split_time[2])
def try_parse_timestamp(string):
timestamp = parse_timestamp(string, '%H:%M:%S')
if timestamp is not None:
return timestamp
timestamp = parse_timestamp(string, '%H:%M')
if timestamp is not None:
return timestamp
return parse_timestamp(string, '%S')
def parse_timestamp(string, pattern):
try:
date = datetime.strptime(string, pattern)
delta = timedelta(hours=date.hour, minutes=date.minute, seconds=date.second)
return int(delta.total_seconds())
except:
return None
def format_timestamp(seconds: float, always_include_hours: bool = False):
assert seconds >= 0, "non-negative timestamp expected"
milliseconds = round(seconds * 1000.0)
hours = milliseconds // 3_600_000
milliseconds -= hours * 3_600_000
minutes = milliseconds // 60_000
milliseconds -= minutes * 60_000
seconds = milliseconds // 1_000
milliseconds -= seconds * 1_000
hours_marker = f"{hours:02d}:" if always_include_hours or hours > 0 else ""
return f"{hours_marker}{minutes:02d}:{seconds:02d},{milliseconds:03d}"

View File

@ -0,0 +1,65 @@
import os
import ffmpeg
import tempfile
from .mytempfile import MyTempFile
from .files import filename
def get_audio(paths: list, audio_channel_index: int, sample_interval: list):
temp_dir = tempfile.gettempdir()
audio_paths = {}
for path in paths:
print(f"Extracting audio from {filename(path)}...")
output_path = os.path.join(temp_dir, f"{filename(path)}.wav")
ffmpeg_input_args = dict()
if sample_interval is not None:
ffmpeg_input_args['ss'] = str(sample_interval[0])
ffmpeg_output_args = dict()
ffmpeg_output_args['acodec'] = "pcm_s16le"
ffmpeg_output_args['ac'] = "1"
ffmpeg_output_args['ar'] = "16k"
ffmpeg_output_args['map'] = "0:a:" + str(audio_channel_index)
if sample_interval is not None:
ffmpeg_output_args['t'] = str(sample_interval[1] - sample_interval[0])
ffmpeg.input(path, **ffmpeg_input_args).output(
output_path,
**ffmpeg_output_args
).run(quiet=True, overwrite_output=True)
audio_paths[path] = output_path
return audio_paths
def escape_windows_path(path: str):
return path.replace("\\", "/").replace(":", ":").replace(" ", "\\ ").replace("(", "\\(").replace(")", "\\)").replace("[", "\\[").replace("]", "\\]").replace("'", "'\\''")
def overlay_subtitles(subtitles: dict, output_dir: str, sample_interval: list):
for path, srt_path in subtitles.items():
out_path = os.path.join(output_dir, f"{filename(path)}.mp4")
print(f"Adding subtitles to {filename(path)}...")
ffmpeg_input_args = dict()
if sample_interval is not None:
ffmpeg_input_args['ss'] = str(sample_interval[0])
ffmpeg_output_args = dict()
if sample_interval is not None:
ffmpeg_output_args['t'] = str(sample_interval[1] - sample_interval[0])
# HACK: On Windows it's impossible to use absolute subtitle file path with ffmpeg, so we use temp copy instead
# see: https://github.com/kkroening/ffmpeg-python/issues/745
with MyTempFile(srt_path) as srt_temp:
video = ffmpeg.input(path, **ffmpeg_input_args)
audio = video.audio
ffmpeg.concat(
video.filter('subtitles', srt_temp.tmp_file_path, force_style="OutlineColour=&H40000000,BorderStyle=3"), audio, v=1, a=1
).output(out_path, **ffmpeg_output_args).run(quiet=True, overwrite_output=True)
print(f"Saved subtitled video to {os.path.abspath(out_path)}.")

View File

@ -0,0 +1,17 @@
import os
from typing import Iterator, TextIO
from .convert import format_timestamp
def write_srt(transcript: Iterator[dict], file: TextIO):
for i, segment in enumerate(transcript, start=1):
print(
f"{i}\n"
f"{format_timestamp(segment.start, always_include_hours=True)} --> "
f"{format_timestamp(segment.end, always_include_hours=True)}\n"
f"{segment.text.strip().replace('-->', '->')}\n",
file=file,
flush=True,
)
def filename(path):
return os.path.splitext(os.path.basename(path))[0]

View File

@ -0,0 +1,18 @@
import tempfile
import os
import shutil
class MyTempFile:
def __init__(self, file_path):
self.file_path = file_path
def __enter__(self):
self.tmp_file = tempfile.NamedTemporaryFile('w', dir='.', delete=False)
self.tmp_file_path = os.path.relpath(self.tmp_file.name, '.')
shutil.copyfile(self.file_path, self.tmp_file_path)
return self
def __exit__(self, exc_type, exc_value, exc_traceback):
self.tmp_file.close()
if os.path.isfile(self.tmp_file_path):
os.remove(self.tmp_file_path)

View File

@ -0,0 +1,20 @@
import warnings
import faster_whisper
from tqdm import tqdm
class WhisperAI:
def __init__(self, model_name, model_args):
self.model = faster_whisper.WhisperModel(model_name, device="cuda", compute_type="float16")
self.model_args = model_args
def transcribe(self, audio_path):
warnings.filterwarnings("ignore")
segments, info = self.model.transcribe(audio_path, **self.model_args)
warnings.filterwarnings("default")
total_duration = round(info.duration, 2) # Same precision as the Whisper timestamps.
with tqdm(total=total_duration, unit=" seconds") as pbar:
for segment in segments:
yield segment
pbar.update(segment.end - segment.start)

View File

@ -1 +1,3 @@
openai-whisper faster-whisper==0.10.0
tqdm==4.56.0
ffmpeg-python==0.2.0

View File

@ -2,16 +2,18 @@ from setuptools import setup, find_packages
setup( setup(
version="1.0", version="1.0",
name="auto_subtitle", name="faster_auto_subtitle",
packages=find_packages(), packages=find_packages(),
py_modules=["auto_subtitle"], py_modules=["auto_subtitle"],
author="Miguel Piedrafita", author="Sergey Chernyaev",
install_requires=[ install_requires=[
'openai-whisper', 'faster-whisper',
'tqdm',
'ffmpeg-python'
], ],
description="Automatically generate and embed subtitles into your videos", description="Automatically generate and embed subtitles into your videos",
entry_points={ entry_points={
'console_scripts': ['auto_subtitle=auto_subtitle.cli:main'], 'console_scripts': ['faster_auto_subtitle=auto_subtitle.cli:main'],
}, },
include_package_data=True, include_package_data=True,
) )