mirror of
https://github.com/karl0ss/bazarr-ai-sub-generator.git
synced 2025-04-26 06:49:22 +01:00
Add GitHub Workflow with Pylint analyzer
This commit is contained in:
parent
fab2921954
commit
1c0cdb6eba
24
.github/workflows/pylint.yml
vendored
Normal file
24
.github/workflows/pylint.yml
vendored
Normal file
@ -0,0 +1,24 @@
|
||||
name: Pylint
|
||||
|
||||
on: [push]
|
||||
|
||||
jobs:
|
||||
build:
|
||||
runs-on: ubuntu-latest
|
||||
strategy:
|
||||
matrix:
|
||||
python-version: ["3.9"]
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
- name: Set up Python ${{ matrix.python-version }}
|
||||
uses: actions/setup-python@v3
|
||||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
python -m pip install --upgrade pip
|
||||
pip install pylint
|
||||
pip install -r requirements.txt
|
||||
- name: Analysing the code with pylint
|
||||
run: |
|
||||
pylint --disable=C0114 --disable=C0115 --disable=C0116 $(git ls-files '*.py')
|
@ -1,9 +1,17 @@
|
||||
import argparse
|
||||
from faster_whisper import available_models
|
||||
from .utils.constants import LANGUAGE_CODES
|
||||
from .main import process
|
||||
from .utils.convert import str2bool, str2timeinterval
|
||||
|
||||
|
||||
def main():
|
||||
"""
|
||||
Main entry point for the script.
|
||||
|
||||
Parses command line arguments, processes the inputs using the specified options,
|
||||
and performs transcription or translation based on the specified task.
|
||||
"""
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
|
||||
parser.add_argument("video", nargs="+", type=str,
|
||||
@ -11,15 +19,18 @@ def main():
|
||||
parser.add_argument("--audio_channel", default="0",
|
||||
type=int, help="audio channel index to use")
|
||||
parser.add_argument("--sample_interval", type=str2timeinterval, default=None,
|
||||
help="generate subtitles for a specific fragment of the video (e.g. 01:02:05-01:03:45)")
|
||||
help="generate subtitles for a specific \
|
||||
fragment of the video (e.g. 01:02:05-01:03:45)")
|
||||
parser.add_argument("--model", default="small",
|
||||
choices=available_models(), help="name of the Whisper model to use")
|
||||
parser.add_argument("--device", type=str, default="auto", choices=[
|
||||
"cpu", "cuda", "auto"], help="Device to use for computation (\"cpu\", \"cuda\", \"auto\")")
|
||||
parser.add_argument("--device", type=str, default="auto",
|
||||
choices=["cpu", "cuda", "auto"],
|
||||
help="Device to use for computation (\"cpu\", \"cuda\", \"auto\")")
|
||||
parser.add_argument("--compute_type", type=str, default="default", choices=[
|
||||
"int8", "int8_float32", "int8_float16",
|
||||
"int8_bfloat16", "int16", "float16",
|
||||
"bfloat16", "float32"], help="Type to use for computation. See https://opennmt.net/CTranslate2/quantization.html.")
|
||||
"int8", "int8_float32", "int8_float16", "int8_bfloat16",
|
||||
"int16", "float16", "bfloat16", "float32"],
|
||||
help="Type to use for computation. \
|
||||
See https://opennmt.net/CTranslate2/quantization.html.")
|
||||
parser.add_argument("--output_dir", "-o", type=str,
|
||||
default=".", help="directory to save the outputs")
|
||||
parser.add_argument("--output_srt", type=str2bool, default=False,
|
||||
@ -32,10 +43,14 @@ def main():
|
||||
help="model parameter, tweak to increase accuracy")
|
||||
parser.add_argument("--condition_on_previous_text", type=str2bool, default=True,
|
||||
help="model parameter, tweak to increase accuracy")
|
||||
parser.add_argument("--task", type=str, default="transcribe", choices=[
|
||||
"transcribe", "translate"], help="whether to perform X->X speech recognition ('transcribe') or X->English translation ('translate')")
|
||||
parser.add_argument("--language", type=str, default="auto", choices=["auto","af","am","ar","as","az","ba","be","bg","bn","bo","br","bs","ca","cs","cy","da","de","el","en","es","et","eu","fa","fi","fo","fr","gl","gu","ha","haw","he","hi","hr","ht","hu","hy","id","is","it","ja","jw","ka","kk","km","kn","ko","la","lb","ln","lo","lt","lv","mg","mi","mk","ml","mn","mr","ms","mt","my","ne","nl","nn","no","oc","pa","pl","ps","pt","ro","ru","sa","sd","si","sk","sl","sn","so","sq","sr","su","sv","sw","ta","te","tg","th","tk","tl","tr","tt","uk","ur","uz","vi","yi","yo","zh"],
|
||||
help="What is the origin language of the video? If unset, it is detected automatically.")
|
||||
parser.add_argument("--task", type=str, default="transcribe",
|
||||
choices=["transcribe", "translate"],
|
||||
help="whether to perform X->X speech recognition ('transcribe') \
|
||||
or X->English translation ('translate')")
|
||||
parser.add_argument("--language", type=str, default="auto",
|
||||
choices=LANGUAGE_CODES,
|
||||
help="What is the origin language of the video? \
|
||||
If unset, it is detected automatically.")
|
||||
|
||||
args = parser.parse_args().__dict__
|
||||
|
||||
|
@ -5,6 +5,7 @@ from .utils.files import filename, write_srt
|
||||
from .utils.ffmpeg import get_audio, overlay_subtitles
|
||||
from .utils.whisper import WhisperAI
|
||||
|
||||
|
||||
def process(args: dict):
|
||||
model_name: str = args.pop("model")
|
||||
output_dir: str = args.pop("output_dir")
|
||||
@ -12,9 +13,7 @@ def process(args: dict):
|
||||
srt_only: bool = args.pop("srt_only")
|
||||
language: str = args.pop("language")
|
||||
sample_interval: str = args.pop("sample_interval")
|
||||
device: str = args.pop("device")
|
||||
compute_type: str = args.pop("compute_type")
|
||||
|
||||
|
||||
os.makedirs(output_dir, exist_ok=True)
|
||||
|
||||
if model_name.endswith(".en"):
|
||||
@ -25,18 +24,26 @@ def process(args: dict):
|
||||
elif language != "auto":
|
||||
args["language"] = language
|
||||
|
||||
audios = get_audio(args.pop("video"), args.pop('audio_channel'), sample_interval)
|
||||
subtitles = get_subtitles(
|
||||
audios, output_srt or srt_only, output_dir, model_name, device, compute_type, args
|
||||
)
|
||||
audios = get_audio(args.pop("video"), args.pop(
|
||||
'audio_channel'), sample_interval)
|
||||
|
||||
model_args = {}
|
||||
model_args["model_size_or_path"] = model_name
|
||||
model_args["device"] = args.pop("device")
|
||||
model_args["compute_type"] = args.pop("compute_type")
|
||||
|
||||
srt_output_dir = output_dir if output_srt or srt_only else tempfile.gettempdir()
|
||||
subtitles = get_subtitles(audios, srt_output_dir, model_args, args)
|
||||
|
||||
if srt_only:
|
||||
return
|
||||
|
||||
overlay_subtitles(subtitles, output_dir, sample_interval)
|
||||
|
||||
def get_subtitles(audio_paths: list, output_srt: bool, output_dir: str, model_name: str, device: str, compute_type: str, model_args: dict):
|
||||
model = WhisperAI(model_name, device, compute_type, model_args)
|
||||
|
||||
def get_subtitles(audio_paths: list, output_dir: str,
|
||||
model_args: dict, transcribe_args: dict):
|
||||
model = WhisperAI(model_args, transcribe_args)
|
||||
|
||||
subtitles_path = {}
|
||||
|
||||
@ -44,9 +51,8 @@ def get_subtitles(audio_paths: list, output_srt: bool, output_dir: str, model_na
|
||||
print(
|
||||
f"Generating subtitles for {filename(path)}... This might take a while."
|
||||
)
|
||||
srt_path = output_dir if output_srt else tempfile.gettempdir()
|
||||
srt_path = os.path.join(srt_path, f"{filename(path)}.srt")
|
||||
|
||||
srt_path = os.path.join(output_dir, f"{filename(path)}.srt")
|
||||
|
||||
segments = model.transcribe(audio_path)
|
||||
|
||||
with open(srt_path, "w", encoding="utf-8") as srt:
|
||||
@ -54,4 +60,4 @@ def get_subtitles(audio_paths: list, output_srt: bool, output_dir: str, model_na
|
||||
|
||||
subtitles_path[path] = srt_path
|
||||
|
||||
return subtitles_path
|
||||
return subtitles_path
|
||||
|
105
auto_subtitle/utils/constants.py
Normal file
105
auto_subtitle/utils/constants.py
Normal file
@ -0,0 +1,105 @@
|
||||
"""
|
||||
List of available language codes
|
||||
"""
|
||||
LANGUAGE_CODES = [
|
||||
"af",
|
||||
"am",
|
||||
"ar",
|
||||
"as",
|
||||
"az",
|
||||
"ba",
|
||||
"be",
|
||||
"bg",
|
||||
"bn",
|
||||
"bo",
|
||||
"br",
|
||||
"bs",
|
||||
"ca",
|
||||
"cs",
|
||||
"cy",
|
||||
"da",
|
||||
"de",
|
||||
"el",
|
||||
"en",
|
||||
"es",
|
||||
"et",
|
||||
"eu",
|
||||
"fa",
|
||||
"fi",
|
||||
"fo",
|
||||
"fr",
|
||||
"gl",
|
||||
"gu",
|
||||
"ha",
|
||||
"haw",
|
||||
"he",
|
||||
"hi",
|
||||
"hr",
|
||||
"ht",
|
||||
"hu",
|
||||
"hy",
|
||||
"id",
|
||||
"is",
|
||||
"it",
|
||||
"ja",
|
||||
"jw",
|
||||
"ka",
|
||||
"kk",
|
||||
"km",
|
||||
"kn",
|
||||
"ko",
|
||||
"la",
|
||||
"lb",
|
||||
"ln",
|
||||
"lo",
|
||||
"lt",
|
||||
"lv",
|
||||
"mg",
|
||||
"mi",
|
||||
"mk",
|
||||
"ml",
|
||||
"mn",
|
||||
"mr",
|
||||
"ms",
|
||||
"mt",
|
||||
"my",
|
||||
"ne",
|
||||
"nl",
|
||||
"nn",
|
||||
"no",
|
||||
"oc",
|
||||
"pa",
|
||||
"pl",
|
||||
"ps",
|
||||
"pt",
|
||||
"ro",
|
||||
"ru",
|
||||
"sa",
|
||||
"sd",
|
||||
"si",
|
||||
"sk",
|
||||
"sl",
|
||||
"sn",
|
||||
"so",
|
||||
"sq",
|
||||
"sr",
|
||||
"su",
|
||||
"sv",
|
||||
"sw",
|
||||
"ta",
|
||||
"te",
|
||||
"tg",
|
||||
"th",
|
||||
"tk",
|
||||
"tl",
|
||||
"tr",
|
||||
"tt",
|
||||
"uk",
|
||||
"ur",
|
||||
"uz",
|
||||
"vi",
|
||||
"yi",
|
||||
"yo",
|
||||
"zh",
|
||||
"yue",
|
||||
]
|
@ -1,23 +1,25 @@
|
||||
from datetime import datetime, timedelta
|
||||
|
||||
def str2bool(string):
|
||||
|
||||
def str2bool(string: str):
|
||||
string = string.lower()
|
||||
str2val = {"true": True, "false": False}
|
||||
|
||||
if string in str2val:
|
||||
return str2val[string]
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Expected one of {set(str2val.keys())}, got {string}")
|
||||
|
||||
def str2timeinterval(string):
|
||||
raise ValueError(
|
||||
f"Expected one of {set(str2val.keys())}, got {string}")
|
||||
|
||||
|
||||
def str2timeinterval(string: str):
|
||||
if string is None:
|
||||
return None
|
||||
|
||||
|
||||
if '-' not in string:
|
||||
raise ValueError(
|
||||
f"Expected time interval HH:mm:ss-HH:mm:ss or HH:mm-HH:mm or ss-ss, got {string}")
|
||||
|
||||
|
||||
intervals = string.split('-')
|
||||
if len(intervals) != 2:
|
||||
raise ValueError(
|
||||
@ -28,42 +30,47 @@ def str2timeinterval(string):
|
||||
if start >= end:
|
||||
raise ValueError(
|
||||
f"Expected time interval end to be higher than start, got {start} >= {end}")
|
||||
|
||||
|
||||
return [start, end]
|
||||
|
||||
def time_to_timestamp(string):
|
||||
|
||||
def time_to_timestamp(string: str):
|
||||
split_time = string.split(':')
|
||||
if len(split_time) == 0 or len(split_time) > 3 or not all([ x.isdigit() for x in split_time ]):
|
||||
if len(split_time) == 0 or len(split_time) > 3 or not all(x.isdigit() for x in split_time):
|
||||
raise ValueError(
|
||||
f"Expected HH:mm:ss or HH:mm or ss, got {string}")
|
||||
|
||||
|
||||
if len(split_time) == 1:
|
||||
return int(split_time[0])
|
||||
|
||||
|
||||
if len(split_time) == 2:
|
||||
return int(split_time[0]) * 60 * 60 + int(split_time[1]) * 60
|
||||
|
||||
|
||||
return int(split_time[0]) * 60 * 60 + int(split_time[1]) * 60 + int(split_time[2])
|
||||
|
||||
def try_parse_timestamp(string):
|
||||
|
||||
def try_parse_timestamp(string: str):
|
||||
timestamp = parse_timestamp(string, '%H:%M:%S')
|
||||
if timestamp is not None:
|
||||
return timestamp
|
||||
|
||||
|
||||
timestamp = parse_timestamp(string, '%H:%M')
|
||||
if timestamp is not None:
|
||||
return timestamp
|
||||
|
||||
|
||||
return parse_timestamp(string, '%S')
|
||||
|
||||
def parse_timestamp(string, pattern):
|
||||
|
||||
def parse_timestamp(string: str, pattern: str):
|
||||
try:
|
||||
date = datetime.strptime(string, pattern)
|
||||
delta = timedelta(hours=date.hour, minutes=date.minute, seconds=date.second)
|
||||
delta = timedelta(
|
||||
hours=date.hour, minutes=date.minute, seconds=date.second)
|
||||
return int(delta.total_seconds())
|
||||
except:
|
||||
except: # pylint: disable=bare-except
|
||||
return None
|
||||
|
||||
|
||||
def format_timestamp(seconds: float, always_include_hours: bool = False):
|
||||
assert seconds >= 0, "non-negative timestamp expected"
|
||||
milliseconds = round(seconds * 1000.0)
|
||||
@ -79,4 +86,3 @@ def format_timestamp(seconds: float, always_include_hours: bool = False):
|
||||
|
||||
hours_marker = f"{hours:02d}:" if always_include_hours or hours > 0 else ""
|
||||
return f"{hours_marker}{minutes:02d}:{seconds:02d},{milliseconds:03d}"
|
||||
|
||||
|
@ -1,9 +1,10 @@
|
||||
import os
|
||||
import ffmpeg
|
||||
import tempfile
|
||||
import ffmpeg
|
||||
from .mytempfile import MyTempFile
|
||||
from .files import filename
|
||||
|
||||
|
||||
def get_audio(paths: list, audio_channel_index: int, sample_interval: list):
|
||||
temp_dir = tempfile.gettempdir()
|
||||
|
||||
@ -13,18 +14,19 @@ def get_audio(paths: list, audio_channel_index: int, sample_interval: list):
|
||||
print(f"Extracting audio from {filename(path)}...")
|
||||
output_path = os.path.join(temp_dir, f"{filename(path)}.wav")
|
||||
|
||||
ffmpeg_input_args = dict()
|
||||
ffmpeg_input_args = {}
|
||||
if sample_interval is not None:
|
||||
ffmpeg_input_args['ss'] = str(sample_interval[0])
|
||||
|
||||
ffmpeg_output_args = dict()
|
||||
ffmpeg_output_args = {}
|
||||
ffmpeg_output_args['acodec'] = "pcm_s16le"
|
||||
ffmpeg_output_args['ac'] = "1"
|
||||
ffmpeg_output_args['ar'] = "16k"
|
||||
ffmpeg_output_args['map'] = "0:a:" + str(audio_channel_index)
|
||||
if sample_interval is not None:
|
||||
ffmpeg_output_args['t'] = str(sample_interval[1] - sample_interval[0])
|
||||
|
||||
ffmpeg_output_args['t'] = str(
|
||||
sample_interval[1] - sample_interval[0])
|
||||
|
||||
ffmpeg.input(path, **ffmpeg_input_args).output(
|
||||
output_path,
|
||||
**ffmpeg_output_args
|
||||
@ -34,9 +36,6 @@ def get_audio(paths: list, audio_channel_index: int, sample_interval: list):
|
||||
|
||||
return audio_paths
|
||||
|
||||
def escape_windows_path(path: str):
|
||||
return path.replace("\\", "/").replace(":", ":").replace(" ", "\\ ").replace("(", "\\(").replace(")", "\\)").replace("[", "\\[").replace("]", "\\]").replace("'", "'\\''")
|
||||
|
||||
|
||||
def overlay_subtitles(subtitles: dict, output_dir: str, sample_interval: list):
|
||||
for path, srt_path in subtitles.items():
|
||||
@ -44,22 +43,26 @@ def overlay_subtitles(subtitles: dict, output_dir: str, sample_interval: list):
|
||||
|
||||
print(f"Adding subtitles to {filename(path)}...")
|
||||
|
||||
ffmpeg_input_args = dict()
|
||||
ffmpeg_input_args = {}
|
||||
if sample_interval is not None:
|
||||
ffmpeg_input_args['ss'] = str(sample_interval[0])
|
||||
|
||||
ffmpeg_output_args = dict()
|
||||
ffmpeg_output_args = {}
|
||||
if sample_interval is not None:
|
||||
ffmpeg_output_args['t'] = str(sample_interval[1] - sample_interval[0])
|
||||
ffmpeg_output_args['t'] = str(
|
||||
sample_interval[1] - sample_interval[0])
|
||||
|
||||
# HACK: On Windows it's impossible to use absolute subtitle file path with ffmpeg, so we use temp copy instead
|
||||
# HACK: On Windows it's impossible to use absolute subtitle file path with ffmpeg
|
||||
# so we use temp copy instead
|
||||
# see: https://github.com/kkroening/ffmpeg-python/issues/745
|
||||
with MyTempFile(srt_path) as srt_temp:
|
||||
video = ffmpeg.input(path, **ffmpeg_input_args)
|
||||
audio = video.audio
|
||||
|
||||
ffmpeg.concat(
|
||||
video.filter('subtitles', srt_temp.tmp_file_path, force_style="OutlineColour=&H40000000,BorderStyle=3"), audio, v=1, a=1
|
||||
video.filter(
|
||||
'subtitles', srt_temp.tmp_file_path,
|
||||
force_style="OutlineColour=&H40000000,BorderStyle=3"), audio, v=1, a=1
|
||||
).output(out_path, **ffmpeg_output_args).run(quiet=True, overwrite_output=True)
|
||||
|
||||
print(f"Saved subtitled video to {os.path.abspath(out_path)}.")
|
||||
print(f"Saved subtitled video to {os.path.abspath(out_path)}.")
|
||||
|
@ -13,5 +13,5 @@ def write_srt(transcript: Iterator[dict], file: TextIO):
|
||||
flush=True,
|
||||
)
|
||||
|
||||
def filename(path):
|
||||
def filename(path: str):
|
||||
return os.path.splitext(os.path.basename(path))[0]
|
||||
|
@ -3,8 +3,25 @@ import os
|
||||
import shutil
|
||||
|
||||
class MyTempFile:
|
||||
"""
|
||||
A context manager for creating a temporary file in current directory, copying the content from
|
||||
a specified file, and handling cleanup operations upon exiting the context.
|
||||
|
||||
Usage:
|
||||
```python
|
||||
with MyTempFile(file_path) as temp_file_manager:
|
||||
# Access the temporary file using temp_file_manager.tmp_file
|
||||
# ...
|
||||
# The temporary file is automatically closed and removed upon exiting the context.
|
||||
```
|
||||
|
||||
Args:
|
||||
- file_path (str): The path to the file whose content will be copied to the temporary file.
|
||||
"""
|
||||
def __init__(self, file_path):
|
||||
self.file_path = file_path
|
||||
self.tmp_file = None
|
||||
self.tmp_file_path = None
|
||||
|
||||
def __enter__(self):
|
||||
self.tmp_file = tempfile.NamedTemporaryFile('w', dir='.', delete=False)
|
||||
|
@ -2,20 +2,64 @@ import warnings
|
||||
import faster_whisper
|
||||
from tqdm import tqdm
|
||||
|
||||
# pylint: disable=R0903
|
||||
class WhisperAI:
|
||||
def __init__(self, model_name, device, compute_type, model_args):
|
||||
self.model = faster_whisper.WhisperModel(model_name, device=device, compute_type=compute_type)
|
||||
self.model_args = model_args
|
||||
"""
|
||||
Wrapper class for the Whisper speech recognition model with additional functionality.
|
||||
|
||||
def transcribe(self, audio_path):
|
||||
This class provides a high-level interface for transcribing audio files using the Whisper
|
||||
speech recognition model. It encapsulates the model instantiation and transcription process,
|
||||
allowing users to easily transcribe audio files and iterate over the resulting segments.
|
||||
|
||||
Usage:
|
||||
```python
|
||||
whisper = WhisperAI(model_args, transcribe_args)
|
||||
|
||||
# Transcribe an audio file and iterate over the segments
|
||||
for segment in whisper.transcribe(audio_path):
|
||||
# Process each transcription segment
|
||||
print(segment)
|
||||
```
|
||||
|
||||
Args:
|
||||
- model_args: Arguments to pass to WhisperModel initialize method
|
||||
- model_size_or_path (str): The name of the Whisper model to use.
|
||||
- device (str): The device to use for computation ("cpu", "cuda", "auto").
|
||||
- compute_type (str): The type to use for computation.
|
||||
See https://opennmt.net/CTranslate2/quantization.html.
|
||||
- transcribe_args (dict): Additional arguments to pass to the transcribe method.
|
||||
|
||||
Attributes:
|
||||
- model (faster_whisper.WhisperModel): The underlying Whisper speech recognition model.
|
||||
- transcribe_args (dict): Additional arguments used for transcribe method.
|
||||
|
||||
Methods:
|
||||
- transcribe(audio_path): Transcribes an audio file and yields the resulting segments.
|
||||
"""
|
||||
|
||||
def __init__(self, model_args: dict, transcribe_args: dict):
|
||||
self.model = faster_whisper.WhisperModel(**model_args)
|
||||
self.transcribe_args = transcribe_args
|
||||
|
||||
def transcribe(self, audio_path: str):
|
||||
"""
|
||||
Transcribes the specified audio file and yields the resulting segments.
|
||||
|
||||
Args:
|
||||
- audio_path (str): The path to the audio file for transcription.
|
||||
|
||||
Yields:
|
||||
- faster_whisper.TranscriptionSegment: An individual transcription segment.
|
||||
"""
|
||||
warnings.filterwarnings("ignore")
|
||||
segments, info = self.model.transcribe(audio_path, **self.model_args)
|
||||
segments, info = self.model.transcribe(audio_path, **self.transcribe_args)
|
||||
warnings.filterwarnings("default")
|
||||
|
||||
total_duration = round(info.duration, 2) # Same precision as the Whisper timestamps.
|
||||
# Same precision as the Whisper timestamps.
|
||||
total_duration = round(info.duration, 2)
|
||||
|
||||
with tqdm(total=total_duration, unit=" seconds") as pbar:
|
||||
for segment in segments:
|
||||
yield segment
|
||||
pbar.update(segment.end - segment.start)
|
||||
pbar.update(0)
|
||||
pbar.update(0)
|
||||
|
Loading…
x
Reference in New Issue
Block a user