Compare commits

..

No commits in common. "main" and "0.3.5" have entirely different histories.
main ... 0.3.5

10 changed files with 277 additions and 265 deletions

View File

@ -1,5 +1,5 @@
[tool.bumpversion]
current_version = "0.3.12"
current_version = "0.3.5"
parse = "(?P<major>\\d+)\\.(?P<minor>\\d+)\\.(?P<patch>\\d+)"
serialize = ["{major}.{minor}.{patch}"]
replace = "{new_version}"

1
.gitignore vendored
View File

@ -12,4 +12,3 @@ test.py
.vscode/launch.json
favourites.json
.vscode/launch.json
venv/*

View File

@ -4,7 +4,7 @@ FROM python:3.11-slim
# Set the working directory in the container
WORKDIR /app
# Set version label
ARG VERSION="0.3.12"
ARG VERSION="0.3.5"
LABEL version=$VERSION
# Copy project files into the container

View File

@ -32,17 +32,9 @@ def get_available_models() -> list:
response = requests.get(url)
if response.status_code == 200:
data = response.json()
# Get SDXL models from CheckpointLoaderSimple
general = data.get("CheckpointLoaderSimple", {}).get("input", {}).get("required", {}).get("ckpt_name", [[]])[0]
# Get FLUX models from UnetLoaderGGUF
flux = data.get("UnetLoaderGGUF", {}).get("input", {}).get("required", {}).get("unet_name", [[]])[0]
# Combine both lists, handling cases where one might be missing
all_models = []
if isinstance(general, list):
all_models.extend(general)
if isinstance(flux, list):
all_models.extend(flux)
return all_models
general = data.get("CheckpointLoaderSimple", {}).get("input", {}).get("required", {}).get("ckpt_name", [])[0]
flux = data.get("UnetLoaderGGUF", {}).get("input", {}).get("required", {}).get("unet_name", [])[0]
return general + flux
else:
print(f"Failed to fetch models: {response.status_code}")
return []
@ -133,25 +125,9 @@ def select_model(model: str) -> tuple[str, str]:
use_qwen = json.loads(user_config["comfyui"].get("Qwen", "false").lower())
if model == "Random Image Model":
# Create a list of available workflows based on configuration
available_workflows = []
if not only_flux:
available_workflows.append("SDXL")
if use_flux:
available_workflows.append("FLUX")
if use_qwen:
available_workflows.append("Qwen")
# If no workflows are available, default to SDXL
if not available_workflows:
available_workflows.append("SDXL")
# Randomly select a workflow
selected_workflow = random.choice(available_workflows)
selected_workflow = "FLUX" if (use_flux and (only_flux or random.choice([True, False]))) else "SDXL"
elif "flux" in model.lower():
selected_workflow = "FLUX"
elif "qwen" in model.lower():
selected_workflow = "Qwen"
else:
selected_workflow = "SDXL"
@ -163,13 +139,6 @@ def select_model(model: str) -> tuple[str, str]:
else: # SDXL
available_model_list = user_config["comfyui"]["models"].split(",")
valid_models = list(set(get_available_models()) & set(available_model_list))
# If no valid models found, fall back to configured models
if not valid_models:
valid_models = available_model_list
# Ensure we have at least one model to choose from
if not valid_models:
# Fallback to a default model
valid_models = ["zavychromaxl_v100.safetensors"]
model = random.choice(valid_models)
return selected_workflow, model
@ -198,12 +167,12 @@ def create_image(prompt: str | None = None, model: str = "Random Image Model") -
file_name="image",
comfy_prompt=prompt,
workflow_path="./workflow_flux.json",
prompt_node="CLIP Text Encode (Positive Prompt)",
seed_node="RandomNoise",
seed_param="noise_seed",
save_node="Save Image",
save_param="filename_prefix",
model_node="UnetLoaderGGUFDisTorchMultiGPU",
prompt_node="Positive Prompt T5",
seed_node="Seed",
seed_param="seed",
save_node="CivitAI Image Saver",
save_param="filename",
model_node="UnetLoaderGGUFAdvancedDisTorchMultiGPU",
model_param="unet_name",
model=model
)

View File

@ -84,8 +84,8 @@ def get_details_from_png(path):
try:
# Flux workflow
data = json.loads(img.info["prompt"])
prompt = data['6']['inputs']['text']
model = data['38']['inputs']['unet_name'].split(".")[0]
prompt = data['44']['inputs']['text']
model = data['35']['inputs']['unet_name'].split(".")[0]
except KeyError:
# SDXL workflow
data = json.loads(img.info["prompt"])
@ -113,24 +113,9 @@ def get_current_version():
return "unknown"
def load_models_from_config():
config = load_config()
# Only load FLUX models if FLUX feature is enabled
use_flux = config["comfyui"].get("flux", "False").lower() == "true"
if use_flux and "comfyui:flux" in config and "models" in config["comfyui:flux"]:
flux_models = config["comfyui:flux"]["models"].split(",")
else:
flux_models = []
sdxl_models = config["comfyui"]["models"].split(",")
# Only load Qwen models if Qwen feature is enabled
use_qwen = config["comfyui"].get("qwen", "False").lower() == "true"
if use_qwen and "comfyui:qwen" in config and "models" in config["comfyui:qwen"]:
qwen_models = config["comfyui:qwen"]["models"].split(",")
else:
qwen_models = []
flux_models = load_config()["comfyui:flux"]["models"].split(",")
sdxl_models = load_config()["comfyui"]["models"].split(",")
qwen_models = load_config()["comfyui:qwen"]["models"].split(",")
sorted_flux_models = sorted(flux_models, key=str.lower)
sorted_sdxl_models = sorted(sdxl_models, key=str.lower)
sorted_qwen_models = sorted(qwen_models, key=str.lower)
@ -240,6 +225,7 @@ def create_prompt_with_random_model(base_prompt: str, topic: str = "random"):
logging.error(f"Error with OpenRouter: {e}")
return "A colorful abstract composition" # Default fallback prompt
return "A colorful abstract composition" # Default fallback prompt
user_config = load_config()
output_folder = user_config["comfyui"]["output_dir"]

View File

@ -1,9 +1,8 @@
import random
import logging
from openai import OpenAI, RateLimitError
from openai import OpenAI
import nest_asyncio
from libs.generic import load_recent_prompts, load_config
from libs.openwebui import create_prompt_on_openwebui
import re
nest_asyncio.apply()
@ -91,20 +90,6 @@ def create_prompt_on_openrouter(prompt: str, topic: str = "random", model: str =
prompt = match.group(1)
logging.debug(prompt)
return prompt
except RateLimitError as e:
logging.warning(f"OpenRouter rate limit exceeded (429): {e}. Falling back to local OpenWebUI model.")
# Try to use OpenWebUI as fallback
openwebui_models = [m.strip() for m in user_config["openwebui"]["models"].split(",") if m.strip()] if "openwebui" in user_config and "models" in user_config["openwebui"] else []
if openwebui_models:
selected_model = random.choice(openwebui_models)
try:
return create_prompt_on_openwebui(user_content, topic, selected_model)
except Exception as e2:
logging.error(f"OpenWebUI fallback also failed: {e2}")
return "A colorful abstract composition" # Final fallback
else:
logging.error("No OpenWebUI models configured for fallback.")
return "A colorful abstract composition" # Final fallback
except Exception as e:
logging.error(f"Error generating prompt with OpenRouter: {e}")
return ""

View File

@ -73,7 +73,6 @@
background: #555;
}
#spinner-overlay {
position: fixed;
inset: 0;
@ -144,7 +143,7 @@
display: none;
max-height: 300px;
overflow-y: auto;
width: 400px;
width: 300px;
}
.queue-item {
@ -157,28 +156,17 @@
border-bottom: none;
}
.queue-item .model {
font-weight: bold;
color: #00aaff;
}
.queue-item .prompt {
font-size: 0.9em;
color: #aaa;
white-space: normal;
word-wrap: break-word;
position: relative;
cursor: pointer;
}
.queue-item .prompt:hover::after {
content: "Model: " attr(data-model);
position: absolute;
bottom: 100%;
left: 0;
background: #333;
color: #00aaff;
padding: 4px 8px;
border-radius: 4px;
font-size: 0.8em;
white-space: nowrap;
z-index: 1002;
box-shadow: 0 2px 4px rgba(0,0,0,0.3);
overflow: hidden;
text-overflow: ellipsis;
}
</style>
{% endblock %}
@ -369,7 +357,8 @@
const item = document.createElement('div');
item.className = 'queue-item';
item.innerHTML = `
<div class="prompt" data-model="${job.model}">${job.prompt}</div>
<div class="model">${job.model}</div>
<div class="prompt" title="${job.prompt}">${job.prompt}</div>
`;
container.appendChild(item);
});

View File

@ -1,31 +1,12 @@
{
"6": {
"inputs": {
"text": "Terminator endoskeleton riding a bmx bike",
"speak_and_recognation": {
"__value__": [
false,
true
]
},
"clip": [
"39",
0
]
},
"class_type": "CLIPTextEncode",
"_meta": {
"title": "CLIP Text Encode (Positive Prompt)"
}
},
"8": {
"inputs": {
"samples": [
"13",
0
"62",
1
],
"vae": [
"41",
"73",
0
]
},
@ -34,157 +15,298 @@
"title": "VAE Decode"
}
},
"9": {
"40": {
"inputs": {
"filename_prefix": "ComfyUI",
"int": 20
},
"class_type": "Int Literal (Image Saver)",
"_meta": {
"title": "Generation Steps"
}
},
"41": {
"inputs": {
"width": 720,
"height": 1080,
"aspect_ratio": "custom",
"swap_dimensions": "Off",
"upscale_factor": 2,
"prescale_factor": 1,
"batch_size": 1
},
"class_type": "CR Aspect Ratio",
"_meta": {
"title": "CR Aspect Ratio"
}
},
"42": {
"inputs": {
"filename": "THISFILE",
"path": "",
"extension": "png",
"steps": [
"40",
0
],
"cfg": [
"52",
0
],
"modelname": "flux1-dev-Q4_0.gguf",
"sampler_name": [
"50",
1
],
"scheduler_name": "normal",
"positive": [
"44",
0
],
"negative": [
"45",
0
],
"seed_value": [
"48",
0
],
"width": [
"41",
0
],
"height": [
"41",
1
],
"lossless_webp": true,
"quality_jpeg_or_webp": 100,
"optimize_png": false,
"counter": 0,
"denoise": [
"53",
0
],
"clip_skip": 0,
"time_format": "%Y-%m-%d-%H%M%S",
"save_workflow_as_json": true,
"embed_workflow": true,
"additional_hashes": "",
"download_civitai_data": true,
"easy_remix": true,
"speak_and_recognation": {
"__value__": [
false,
true
]
},
"images": [
"42",
"8",
0
]
},
"class_type": "SaveImage",
"class_type": "Image Saver",
"_meta": {
"title": "Save Image"
"title": "CivitAI Image Saver"
}
},
"13": {
"44": {
"inputs": {
"text": "Yautja Predator wielding flamethrower in smoky, cyberpunk alleyway darkness",
"speak_and_recognation": {
"__value__": [
false,
true
]
}
},
"class_type": "ttN text",
"_meta": {
"title": "Positive Prompt T5"
}
},
"45": {
"inputs": {
"text": "text, watermark, deformed Avoid flat colors, poor lighting, and artificial elements. No unrealistic elements, low resolution, or flat colors. Avoid generic objects, poor lighting, and inconsistent styles, blurry, low-quality, distorted faces, overexposed lighting, extra limbs, bad anatomy, low contrast",
"speak_and_recognation": {
"__value__": [
false,
true
]
}
},
"class_type": "ttN text",
"_meta": {
"title": "Negative Prompt"
}
},
"47": {
"inputs": {
"text": [
"44",
0
],
"speak_and_recognation": {
"__value__": [
false,
true
]
},
"clip": [
"72",
0
]
},
"class_type": "CLIPTextEncode",
"_meta": {
"title": "Prompt Encoder"
}
},
"48": {
"inputs": {
"seed": 47371998700984,
"increment": 1
},
"class_type": "Seed Generator (Image Saver)",
"_meta": {
"title": "Seed"
}
},
"49": {
"inputs": {
"scheduler": "beta"
},
"class_type": "Scheduler Selector (Comfy) (Image Saver)",
"_meta": {
"title": "Scheduler"
}
},
"50": {
"inputs": {
"sampler_name": "euler"
},
"class_type": "Sampler Selector (Image Saver)",
"_meta": {
"title": "Sampler"
}
},
"52": {
"inputs": {
"float": 3.500000000000001
},
"class_type": "Float Literal (Image Saver)",
"_meta": {
"title": "CFG Scale"
}
},
"53": {
"inputs": {
"float": 1.0000000000000002
},
"class_type": "Float Literal (Image Saver)",
"_meta": {
"title": "Denoise"
}
},
"62": {
"inputs": {
"noise": [
"25",
"65",
0
],
"guider": [
"22",
"67",
0
],
"sampler": [
"16",
"63",
0
],
"sigmas": [
"17",
"64",
0
],
"latent_image": [
"27",
0
"41",
5
]
},
"class_type": "SamplerCustomAdvanced",
"_meta": {
"title": "SamplerCustomAdvanced"
"title": "Custom Sampler"
}
},
"16": {
"63": {
"inputs": {
"sampler_name": "euler"
"sampler_name": [
"50",
0
]
},
"class_type": "KSamplerSelect",
"_meta": {
"title": "KSampler Select"
}
},
"17": {
"64": {
"inputs": {
"scheduler": "simple",
"steps": 20,
"denoise": 1,
"scheduler": [
"49",
0
],
"steps": [
"40",
0
],
"denoise": [
"53",
0
],
"model": [
"30",
"35",
0
]
},
"class_type": "BasicScheduler",
"_meta": {
"title": "BasicScheduler"
"title": "Sigma Generator"
}
},
"22": {
"65": {
"inputs": {
"noise_seed": [
"48",
0
]
},
"class_type": "RandomNoise",
"_meta": {
"title": "Noise Generator"
}
},
"67": {
"inputs": {
"model": [
"30",
"35",
0
],
"conditioning": [
"26",
"47",
0
]
},
"class_type": "BasicGuider",
"_meta": {
"title": "BasicGuider"
"title": "Prompt Guider"
}
},
"25": {
"inputs": {
"noise_seed": 707623342760804
},
"class_type": "RandomNoise",
"_meta": {
"title": "RandomNoise"
}
},
"26": {
"inputs": {
"guidance": 3.5,
"conditioning": [
"6",
0
]
},
"class_type": "FluxGuidance",
"_meta": {
"title": "FluxGuidance"
}
},
"27": {
"inputs": {
"width": 720,
"height": 1088,
"batch_size": 1
},
"class_type": "EmptySD3LatentImage",
"_meta": {
"title": "CR Aspect Ratio"
}
},
"30": {
"inputs": {
"max_shift": 1.15,
"base_shift": 0.5,
"width": 720,
"height": 1088,
"model": [
"38",
0
]
},
"class_type": "ModelSamplingFlux",
"_meta": {
"title": "ModelSamplingFlux"
}
},
"38": {
"inputs": {
"unet_name": "flux1-dev-Q4_0.gguf",
"device": "cuda:1",
"virtual_vram_gb": 0,
"use_other_vram": true,
"expert_mode_allocations": ""
},
"class_type": "UnetLoaderGGUFDisTorchMultiGPU",
"_meta": {
"title": "UnetLoaderGGUFDisTorchMultiGPU"
}
},
"39": {
"72": {
"inputs": {
"clip_name1": "t5-v1_1-xxl-encoder-Q4_K_M.gguf",
"clip_name2": "clip_l.safetensors",
"type": "flux",
"device": "cuda:0",
"virtual_vram_gb": 0,
"use_other_vram": true,
"use_other_vram": false,
"expert_mode_allocations": ""
},
"class_type": "DualCLIPLoaderGGUFDisTorchMultiGPU",
@ -192,7 +314,7 @@
"title": "DualCLIPLoaderGGUFDisTorchMultiGPU"
}
},
"41": {
"73": {
"inputs": {
"vae_name": "FLUX1/ae.safetensors",
"device": "cuda:0"
@ -202,18 +324,20 @@
"title": "VAELoaderMultiGPU"
}
},
"42": {
"35": {
"inputs": {
"offload_model": true,
"offload_cache": true,
"anything": [
"8",
0
]
"unet_name": "flux1-dev-Q4_0.gguf",
"dequant_dtype": "default",
"patch_dtype": "default",
"patch_on_device": false,
"device": "cuda:1",
"virtual_vram_gb": 0,
"use_other_vram": false,
"expert_mode_allocations": ""
},
"class_type": "VRAMCleanup",
"class_type": "UnetLoaderGGUFAdvancedDisTorchMultiGPU",
"_meta": {
"title": "🎈VRAM-Cleanup"
"title": "UnetLoaderGGUFAdvancedDisTorchMultiGPU"
}
}
}

View File

@ -98,7 +98,7 @@
"102": {
"inputs": {
"images": [
"129",
"98",
0
]
},
@ -143,19 +143,5 @@
"_meta": {
"title": "VAELoaderMultiGPU"
}
},
"129": {
"inputs": {
"offload_model": true,
"offload_cache": true,
"anything": [
"98",
0
]
},
"class_type": "VRAMCleanup",
"_meta": {
"title": "🎈VRAM-Cleanup"
}
}
}

View File

@ -52,12 +52,6 @@
"6": {
"inputs": {
"text": "A bustling cyberpunk street at night, filled with neon signs, rain-soaked pavement, and futuristic street vendors. High detail, vivid neon colors, and realistic reflections.",
"speak_and_recognation": {
"__value__": [
false,
true
]
},
"clip": [
"4",
1
@ -71,12 +65,6 @@
"7": {
"inputs": {
"text": "text, watermark, deformed Avoid flat colors, poor lighting, and artificial elements. No unrealistic elements, low resolution, or flat colors. Avoid generic objects, poor lighting, and inconsistent styles, blurry, low-quality, distorted faces, overexposed lighting, extra limbs, bad anatomy, low contrast",
"speak_and_recognation": {
"__value__": [
false,
true
]
},
"clip": [
"4",
1
@ -107,7 +95,7 @@
"inputs": {
"filename_prefix": "ComfyUI",
"images": [
"10",
"8",
0
]
},
@ -115,19 +103,5 @@
"_meta": {
"title": "Save Image"
}
},
"10": {
"inputs": {
"offload_model": true,
"offload_cache": true,
"anything": [
"8",
0
]
},
"class_type": "VRAMCleanup",
"_meta": {
"title": "🎈VRAM-Cleanup"
}
}
}